135 research outputs found

    Enhanced Intracellular Uptake of CdTe Quantum Dots by Conjugation of Oligopeptides

    Get PDF
    Arg-Gly-Asp-Ser (RGDS), a typical membrane-permeable carrier peptide, was conjugated with mercaptoisobutyric acid-immobilized CdTe quantum dot (CTNPs) to enhance the intracellular uptake of quantum dots. Mean size of mercaptoisobutyric acid-immobilized quantum dots (37 nm) as determined by dynamic light scattering was increased up to 54 nm after RGDS immobilization. It was found, from in vitro cell culture experiment, that fibroblast (NIH 3T3) cells were well proliferated in the presence of RGDS-conjugated quantum dots (RCTNPs), and the intracellular uptake of CTNPs and RCTNPs was studied by means of ICP and fluorescence microscopy. As a result, the RCTNPs specifically bound to the membrane of NIH 3T3 cells and almost saturated after 6 hours incubation. The amount of RCTNPs uptaken by the cells was higher than that of CTNPs, demonstrating the enhancing effect of RGDS peptide conjugation on the intracellular uptake of quantum dots (QDs)

    Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer

    Get PDF
    Cytotoxicity is a severe problem for cadmium sulfide nanoparticles (CSNPs) in biological systems. In this study, mercaptoacetic acid-coated CSNPs, typical semiconductor Q-dots, were synthesized in aqueous medium by the arrested precipitation method. Then, amino-terminated polyethylene glycol (PEG) was conjugated to the surface of CSNPs (PCSNPs) in order to introduce amino groups to the surface. Finally, insulin was immobilized on the surface of PCSNPs (ICSNPs) to reduce cytotoxicity as well as to enhance cell compatibility. The presence of insulin on the surface of ICSNPs was confirmed by observing infrared absorptions of amide I and II. The mean diameter of ICSNPs as determined by dynamic light scattering was about 38 nm. Human fibroblasts were cultured in the absence and presence of cadmium sulfide nanoparticles to evaluate cytotoxicity and cell compatibility. The results showed that the cytotoxicity of insulin-immobilized cadmium sulfide nanoparticles was significantly suppressed by usage of PEG as a spacer. In addition, cell proliferation was highly facilitated by the addition of ICSNPs. The ICSNPs used in this study will be potentials to be used in bio-imaging applications

    Neural Responses to Fluoxetine in Youths with Disruptive Behavior and Trauma Exposure: A Pilot Study

    Get PDF
    Objective: A preliminary investigation of the impact of a serotonergic agent (fluoxetine) on symptom profile and neural response in youths with disruptive behavior disorders (DBDs) and a history of trauma exposure. Methods: There were three participant groups: (i) Youths with DBDs and trauma exposure who received fluoxetine treatment for 8 weeks (n = 11); (ii) A matched group of youths with DBDs and trauma exposure who received routine regular follow-up in an outpatient clinic (n = 10); and (iii) Typically developing youths (n = 18). All participants conducted an expression processing functional magnetic resonance imaging task twice, 8 weeks apart: (pretreatment and post-treatment for youths with DBDs). Results: Youths with DBDs and trauma exposure who received fluoxetine treatment compared to the other two groups showed: (i) significant improvement in externalizing, oppositional defiant disorder, irritability, anxiety-depression, and trauma-related symptoms; (ii) as a function of fearful expression intensity, significantly decreased amygdala response and increased recruitment of regions implicated in top-down attention control (insula cortex, inferior parietal lobule, and postcentral gyrus) and emotional regulation (ventromedial prefrontal cortex [vmPFC]); and (iii) correlation between DBD/irritability symptom improvement and increased activation of top-down attention control areas (inferior parietal lobule, insula cortex, and postcentral gyrus) and an emotion regulation area (vmPFC). Conclusions: This study provides preliminary evidence that a serotonergic agent (fluoxetine) can reduce disruptive behavior and mood symptoms in youths with DBDs and trauma exposure and that this may be mediated by enhanced activation of top-down attention control and emotion regulation areas (inferior parietal lobule, insula cortex, and vmPFC)

    Voxel-Wise Analysis of Diffusion Tensor Imaging for Clinical Outcome of Cochlear Implantation: Retrospective Study

    Get PDF
    ObjectivesTo evaluate retrospectively, the possible difference in diffusion tensor imaging (DTI) metric of fractional anisotropy (FA) between good and poor surgical outcome cochlear implantation (CI) patients using investigator-independent voxel-wise analysis.MethodsEighteen patients (11 males, 7 females; mean age, 5.9 years) with profound sensorineural hearing loss underwent DTI scans using a 3.0 Tesla magnetic resonance scanner. Among the 18 patients, 10 patients with categories of auditory performance (CAP) score over 6 were classified into the good outcome group and 8 patients with CAP score below 6 were classified into the poor outcome group. The diffusion tensor scalar measure was calculated from the eigenvalues of the tensor on a voxel-by-voxel basis from each subject and two-sample t-test evaluation between good and poor outcome subjects were performed for each voxel of FA values, across the entire brain, with a voxel-wise intensity threshold of P<0.0005 (uncorrected) and a contiguous cluster size of 64 voxels. Individual values of FA were measured by using the region-of-interest based analysis for correlation analysis with CAP scores, open sentence and open word scores.ResultsTwo-sample t-test evaluation using SPM voxel-wise analysis found significantly higher FA values at the several brain areas including Broca's area, genu of the corpus callosum, and auditory tract in good outcome subjects compared to poor outcome subjects. Correlation analyses between FA and CAP scores, open sentence and open word scores revealed strong correlations at medial geniculate nucleus, Broca's area, genu of the corpus callosum and auditory tract.ConclusionInvestigator-independent voxel-based analysis of DTI image demonstrated that good outcome subjects showed better neural integrity at brain areas associated with language and auditory functions, suggesting that the conservation of microstructural integrity of these brain areas is important. Preoperative functional imaging may be helpful for CI

    Optical Mobius symmetry in metamaterials

    Get PDF
    We experimentally observed a new topological symmetry in optical composites, namely, metamaterials. While it is not found yet in nature materials, the electromagnetic Mo¨bius symmetry discovered in metamaterials is equivalent to the structural symmetry of a Mo¨bius strip, with the number of twists controlled by the sign change of the electromagnetic coupling between the meta-atoms. We further demonstrate that metamaterials with different coupling signs exhibit resonance frequencies that depend only on the number but not the locations of the ‘‘twists,’’ thus confirming its topological nature. The new topological symmetry found in metamaterials may enable unique functionalities in optical materialsThis work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 on simulations and fabrication, and by the NSF Nano-scale Science and Engineering Center (NSEC) under Grant No. CMMI-0751621 for optical characterizations

    Dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs) over Pt supported on an ordered pore structure of 3-D cubic mesoporous KIT-6 silica

    Get PDF
    Pt supported on ordered mesoporous silica (KIT-6) catalyst was examined for the dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs, 1: MCH, 2: hydrogenated biphenyl-based eutectic mixture (H-BPDM)) conditions. The longer pore-residence time of the MCH molecules in the 3D bicontinuous pore structure of the Pt/KIT-6 catalyst strongly affected the catalytic activity because a higher MCH concentration was achieved in the vicinity of the Pt active sites. Pt/KIT-6 catalyst exhibited a higher surface area, pore volume, and Pt dispersion with narrower particle size distribution (average Pt particle size: ~1.3 nm). Therefore, higher LOHC conversion with faster hydrogen production occurred, with a higher hydrogen selectivity over Pt/KIT-6 compared with Pt/SiO2 and Pt/Al2O3. Long-term experiment results indicated that the Pt/KIT-6 catalytic activity was stable over the reaction time than that of the other catalysts. No significant structural collapse occurred in KIT-6 during the dehydrogenation. Carbon coking was observed for all three samples

    Metal-free, polyether-mediated H_2-release from ammonia borane: roles of hydrogen bonding interactions in promoting dehydrogenation

    Get PDF
    Polyetheral additives were found to be efficient promoters to enhance the rate of H2-release from ammonia borane (AB) at various temperatures. In particular, tetraethylene glycol dimethyl ether (T4EGDE, 29 wt% relative to AB + T4EGDE) exhibited significantly improved activities for AB dehydrogenation, with the material-based hydrogen storage capacity of 10.3 wt% at 125 °C within 40 min. In situ FT-IR spectroscopy indicated the formation of B-(cyclodiborazanyl)amino-borohydride (BCDB), borazine, and μ-aminodiborane as gaseous byproducts. In addition, 11B nuclear magnetic resonance (NMR) spectroscopy further revealed that diammoniate of diborane (DADB) was initially formed to give polyaminoborane as liquid and/or solid spent-fuel, consistent with previous reports. Density Functional Theory (DFT) calculations suggested that hydrogen bonding interactions between AB and a polyetheral promoter initially played an important role in increasing the reactivity of B–H bonds of AB by transferring electron density from oxygen atoms of the promoter into B–H bonds of AB. These partially activated, hydridic B–H bonds were proposed to help promote the formation of diammoniate of diborane (DADB), which is considered as a reactive intermediate, eventually enhancing the rate of H2-release from AB. In addition, our in situ solid state 11B magic angle spinning (MAS) NMR measurements further confirmed that the rate of DADB formation from AB with a small quantity of T4EGDE was found to be much faster than that of pristine AB even at 50 °C. This metal-free method for H2-release from AB with an added, small quantity of polyethers would be helpful to develop feasible hydrogen storage systems for long-term fuel cell applications
    • …
    corecore