49 research outputs found

    nArgBP2 together with GKAP and SHANK3 forms a dynamic layered structure

    Get PDF
    nArgBP2, a protein whose disruption is implicated in intellectual disability, concentrates in excitatory spine-synapses. By forming a triad with GKAP and SHANK, it regulates spine structural rearrangement. We here find that GKAP and SHANK3 concentrate close to the synaptic contact, whereas nArgBP2 concentrates more centrally in the spine. The three proteins collaboratively form biomolecular condensates in living fibroblasts, exhibiting distinctive layered localizations. nArgBP2 concentrates in the inner phase, SHANK3 in the outer phase, and GKAP partially in both. Upon co-expression of GKAP and nArgBP2, they evenly distribute within condensates, with a notable peripheral localization of SHANK3 persisting when co-expressed with either GKAP or nArgBP2. Co-expression of SHANK3 and GKAP with CaMKIIα results in phase-in-phase condensates, with CaMKIIα at the central locus and SHANK3 and GKAP exhibiting peripheral localization. Additional co-expression of nArgBP2 maintains the layered organizational structure within condensates. Subsequent CaMKIIα activation disperses a majority of the condensates, with an even distribution of all proteins within the extant deformed condensates. Our findings suggest that protein segregation via phase separation may contribute to establishing layered organization in dendritic spines

    SCAMP5 mediates activity-dependent enhancement of NHE6 recruitment to synaptic vesicles during synaptic plasticity

    Get PDF
    Na+(K+)/H+ exchanger 6 (NHE6) on synaptic vesicle (SV) is critical for the presynaptic regulation of quantal size at the glutamatergic synapses by converting the chemical gradient (ΔpH) into membrane potential (Δψ) across the SV membrane. We recently found that NHE6 directly interacts with secretory carrier membrane protein 5 (SCAMP5), and SCAMP5-dependent recruitment of NHE6 to SVs controls the strength of synaptic transmission by modulation of quantal size of glutamate release at rest. It is, however, unknown whether NHE6 recruitment by SCAMP5 plays a role during synaptic plasticity. Here, we found that the number of NHE6-positive presynaptic boutons was significantly increased by the chemical long-term potentiation (cLTP). Since cLTP involves new synapse formation, our results indicated that NHE6 was recruited not only to the existing presynaptic boutons but also to the newly formed presynaptic boutons. Knock down of SCAMP5 completely abrogated the enhancement of NHE6 recruitment by cLTP. Interestingly, despite an increase in the number of NHE6-positive boutons by cLTP, the quantal size of glutamate release at the presynaptic terminals remained unaltered. Together with our recent results, our findings indicate that SCAMP5-dependent recruitment of NHE6 plays a critical role in manifesting presynaptic efficacy not only at rest but also during synaptic plasticity. Since both are autism candidate genes, reduced presynaptic efficacy by interfering with their interaction may underlie the molecular mechanism of synaptic dysfunction observed in autism.This work was supported by Grants from the National Research Foundation of Korea (2019R1A2C2089182) to SC. This work was also supported by Grant 800-20180489 and the Education and Research Encouragement Fund of SNUH

    Multivalent electrostatic pi–cation interaction between synaptophysin and synapsin is responsible for the coacervation

    Get PDF
    We recently showed that synaptophysin (Syph) and synapsin (Syn) can induce liquid–liquid phase separation (LLPS) to cluster small synaptic-like microvesicles in living cells which are highly reminiscent of SV cluster. However, as there is no physical interaction between them, the underlying mechanism for their coacervation remains unknown. Here, we showed that the coacervation between Syph and Syn is primarily governed by multivalent pi–cation electrostatic interactions among tyrosine residues of Syph C-terminal (Ct) and positively charged Syn. We found that Syph Ct is intrinsically disordered and it alone can form liquid droplets by interactions among themselves at high concentration in a crowding environment in vitro or when assisted by additional interactions by tagging with light-sensitive CRY2PHR or subunits of a multimeric protein in living cells. Syph Ct contains 10 repeated sequences, 9 of them start with tyrosine, and mutating 9 tyrosine to serine (9YS) completely abolished the phase separating property of Syph Ct, indicating tyrosine-mediated pi-interactions are critical. We further found that 9YS mutation failed to coacervate with Syn, and since 9YS retains Syphs negative charge, the results indicate that pi–cation interactions rather than simple charge interactions are responsible for their coacervation. In addition to revealing the underlying mechanism of Syph and Syn coacervation, our results also raise the possibility that physiological regulation of pi–cation interactions between Syph and Syn during synaptic activity may contribute to the dynamics of synaptic vesicle clustering.This work was supported by grants from the National Research Foundation of Korea (Grants 2019R1A2C2089182 to S.C.). This work was also supported by the Education and Research Encouragement Fund of Seoul National University Hospital

    Open-top axially swept light-sheet microscopy

    Get PDF
    Open-top light-sheet microscopy (OT-LSM) is a specialized microscopic technique for high throughput cellular imaging of large tissue specimens including optically cleared tissues by having the entire optical setup below the sample stage. Current OT-LSM systems had relatively low axial resolutions by using weakly focused light sheets to cover the imaging field of view (FOV). In this report, open-top axially swept LSM (OTAS-LSM) was developed for high-throughput cellular imaging with improved axial resolution. OTAS-LSM swept a tightly focused excitation light sheet across the imaging FOV using an electro tunable lens (ETL) and collected emission light at the focus of the light sheet with a camera in the rolling shutter mode. OTAS-LSM was developed by using air objective lenses and a liquid prism and it had on-axis optical aberration associated with the mismatch of refractive indices between air and immersion medium. The effects of optical aberration were analyzed by both simulation and experiment, and the image resolutions were under 1.6 & micro;m in all directions. The newly developed OTAS-LSM was applied to the imaging of optically cleared mouse brain and small intestine, and it demonstrated the single-cell resolution imaging of neuronal networks. OTAS-LSM might be useful for the high-throughput cellular examination of optically cleared large tissues

    Impairment of Release Site Clearance within the Active Zone by Reduced SCAMP5 Expression Causes Short-Term Depression of Synaptic Release

    Get PDF
    Summary: Despite being a highly enriched synaptic vesicle (SV) protein and a candidate gene for autism, the physiological function of SCAMP5 remains mostly enigmatic. Here, using optical imaging and electrophysiological experiments, we demonstrate that SCAMP5 plays a critical role in release site clearance at the active zone. Truncation analysis revealed that the 2/3 loop domain of SCAMP5 directly interacts with adaptor protein 2, and this interaction is critical for its role in release site clearance. Knockdown (KD) of SCAMP5 exhibited pronounced synaptic depression accompanied by a slower recovery of the SV pool. Moreover, it induced a strong frequency-dependent short-term depression of synaptic release, even under the condition of sufficient release-ready SVs. Super-resolution microscopy further proved the defects in SV protein clearance induced by KD. Thus, reduced expression of SCAMP5 may impair the efficiency of SV clearance at the active zone, and this might relate to the synaptic dysfunction observed in autism. : Park et al. show that SCAMP5 plays an important role in release site clearance during intense neuronal activity. Loss of SCAMP5 results in a traffic jam at release sites, causing aberrant short-term synaptic depression that might be associated with the synaptic dysfunction observed in autism. Keywords: secretory carrier membrane protein, SCAMP5, autism spectrum disorder, adaptor protein 2, release site clearance, presynaptic active zone, short-term depression, endocytosis, super-resolution microscop

    Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer's disease models

    Get PDF
    Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aβ oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aβ oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aβ-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD

    Dynamics of Multiple Trafficking Behaviors of Individual Synaptic Vesicles Revealed by Quantum-Dot Based Presynaptic Probe

    Get PDF
    Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity
    corecore