11,896 research outputs found

    Improving Global Radial Anisotropy Tomography: The Importance of Simultaneously Inverting for Crustal and Mantle Structure

    Get PDF
    Observed seismic anisotropy gives the most direct information on mantle flow, but it is challenging to image it robustly at global scales. Difficulties in separating crustal from mantle structures in particular can have a strong influence on the imaging. Here we carry out several resolution tests using both real and synthetic data, which show that unconstrained crustal structure can strongly contaminate retrieved radial anisotropy at 100–150 km depth. To efficiently reduce crustal effects, we perform whole‐mantle radially anisotropic tomographic inversions including crustal thickness perturbations as model parameters. Our data set includes short‐period group velocity data, which are sensitive to shallow structure. We perform a series of tests that highlight the advantages of our approach and show that to properly constrain thin oceanic crust in global radially anisotropic inversions, group velocity data with wave periods of at least T∼20  s or shorter are required. Our Moho perturbation model shows thicker crust along subduction zones and beneath the Ontong Java plateau in the southwestern Pacific than in the global crustal model CRUST2.0. These features agree well with other crustal models as well as with refraction survey data and tectonic features in these regions

    Aligning Manifolds of Double Pendulum Dynamics Under the Influence of Noise

    Full text link
    This study presents the results of a series of simulation experiments that evaluate and compare four different manifold alignment methods under the influence of noise. The data was created by simulating the dynamics of two slightly different double pendulums in three-dimensional space. The method of semi-supervised feature-level manifold alignment using global distance resulted in the most convincing visualisations. However, the semi-supervised feature-level local alignment methods resulted in smaller alignment errors. These local alignment methods were also more robust to noise and faster than the other methods.Comment: The final version will appear in ICONIP 2018. A DOI identifier to the final version will be added to the preprint, as soon as it is availabl

    Solar System: Sifting through the debris

    Get PDF
    A quadrillion previously unnoticed small bodies beyond Neptune have been spotted as they dimmed X-rays from a distant source. Models of the dynamics of debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006, Nature, 442, 660-66

    Survival after acute hemodialysis in Pennsylvania, 2005-2007: A retrospective cohort study

    Get PDF
    Background: Little is known about acute hemodialysis in the US. Here we describe predictors of receipt of acute hemodialysis in one state and estimate the marginal impact of acute hemodialysis on survival after accounting for confounding due to illness severity. Materials and Methods: This is a retrospective cohort study of acute-care hospitalizations in Pennsylvania from October 2005 to December 2007 using data from the Pennsylvania Health Care Cost Containment Council. Exposure variable is acute hemodialysis; dependent variable is survival following acute hemodialysis. We used multivariable logistic regression to determine propensity to receive acute hemodialysis and then, for a Cox proportional hazards model, matched acute hemodialysis and non-acute hemodialysis patients 1:5 on this propensity. Results: In 2,131,248 admissions of adults without end-stage renal disease, there were 6,657 instances of acute hemodialysis. In analyses adjusted for predicted probability of death upon admission plus other covariates and stratified on age, being male, black, and insured were independent predictors of receipt of acute hemodialysis. One-year post-admission mortality was 43% for those receiving acute hemodialysis, compared to 13% among those not receiving acute hemodialysis. After matching on propensity to receive acute hemodialysis and adjusting for predicted probability of death upon admission, patients who received acute hemodialysis had a higher risk of death than patients who did not over at least 1 year of follow-up (hazard ratio 1.82, 95% confidence interval 1.68-1.97). Conclusions: In a populous US state, receipt of acute hemodialysis varied by age, sex, race, and insurance status even after adjustment for illness severity. In a comparison of patients with similar propensity to receive acute hemodialysis, those who did receive it were less likely to survive than those who did not. These findings raise questions about reasons for lack of benefit. © 2014 Ramer et al

    Atoms in Flight and the Remarkable Connections between Atomic and Hadronic Physics

    Full text link
    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.Comment: Presented at EXA2011, the International Conference on Exotic Atoms and Related Topics, Vienna, September 5-9, 201

    Discovering monotonic stemness marker genes from time-series stem cell microarray data

    Get PDF
    © 2015 Wang et al.; licensee BioMed Central Ltd. Background: Identification of genes with ascending or descending monotonic expression patterns over time or stages of stem cells is an important issue in time-series microarray data analysis. We propose a method named Monotonic Feature Selector (MFSelector) based on a concept of total discriminating error (DEtotal) to identify monotonic genes. MFSelector considers various time stages in stage order (i.e., Stage One vs. other stages, Stages One and Two vs. remaining stages and so on) and computes DEtotal of each gene. MFSelector can successfully identify genes with monotonic characteristics.Results: We have demonstrated the effectiveness of MFSelector on two synthetic data sets and two stem cell differentiation data sets: embryonic stem cell neurogenesis (ESCN) and embryonic stem cell vasculogenesis (ESCV) data sets. We have also performed extensive quantitative comparisons of the three monotonic gene selection approaches. Some of the monotonic marker genes such as OCT4, NANOG, BLBP, discovered from the ESCN dataset exhibit consistent behavior with that reported in other studies. The role of monotonic genes found by MFSelector in either stemness or differentiation is validated using information obtained from Gene Ontology analysis and other literature. We justify and demonstrate that descending genes are involved in the proliferation or self-renewal activity of stem cells, while ascending genes are involved in differentiation of stem cells into variant cell lineages.Conclusions: We have developed a novel system, easy to use even with no pre-existing knowledge, to identify gene sets with monotonic expression patterns in multi-stage as well as in time-series genomics matrices. The case studies on ESCN and ESCV have helped to get a better understanding of stemness and differentiation. The novel monotonic marker genes discovered from a data set are found to exhibit consistent behavior in another independent data set, demonstrating the utility of the proposed method. The MFSelector R function and data sets can be downloaded from: http://microarray.ym.edu.tw/tools/MFSelector/

    Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector

    Full text link
    Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.Comment: Accepted at MICCAI 2019 (International Conference on Medical Image Computing and Computer Assisted Intervention

    A single sub-km Kuiper Belt object from a stellar Occultation in archival data

    Get PDF
    The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects (KBOs). Small, sub-km sized, KBOs elude direct detection, but the signature of their occultations of background stars should be detectable. Observations at both optical and X-ray wavelengths claim to have detected such occultations, but their implied KBO abundances are inconsistent with each other and far exceed theoretical expectations. Here, we report an analysis of archival data that reveals an occultation by a body with a 500 m radius at a distance of 45 AU. The probability of this event to occur due to random statistical fluctuations within our data set is about 2%. Our survey yields a surface density of KBOs with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The fact that we detected only one event, firmly shows a deficit of sub-km sized KBOs compared to a population extrapolated from objects with r>50 km. This implies that sub-km sized KBOs are undergoing collisional erosion, just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until 1800 hours London time on 16 December. 19 pages; 7 figure

    A genome-wide scan using tree-based association analysis for candidate loci related to fasting plasma glucose levels

    Get PDF
    BACKGROUND: In the analysis of complex traits such as fasting plasma glucose levels, researchers often adjust the trait for some important covariates before assessing gene susceptibility, and may at times encounter confounding among the covariates and the susceptible genes. Previously, the tree-based method has been employed to accommodate the heterogeneity in complex traits. In this study, we performed a genome-wide screen on fasting glucose levels in the offspring generation of the Framingham Heart Study provided by the Genetic Analysis Workshop 13. We defined one quantitative trait and converted it to a dichotomous trait based on a predetermined cut-off value, and performed association analyses using regression and classification trees for the two traits, respectively. A marker was interpreted as positive if at least one of its alleles exhibited association in both analyses. Our purpose was to identify candidate genes susceptible to fasting glucose levels in the presence of other covariates. The covariates entered in the analysis including sex, body mass index, and lipids (total plasma cholesterol, high density lipoprotein cholesterol, and triglycerides) of the subjects, and those of their parents. RESULTS: Four out of seven positive regions in chromosomes 1, 2, 6, 11, 16, 18, and 19 from our analyses harbored or were very close to previously reported diabetes related genes or potential candidate genes. CONCLUSION: This screen method that employed tree-based association showed promise for identifying candidate loci in the presence of covariates in genome scans for complex traits
    corecore