256 research outputs found

    Spectral fluctuations effects on conductance peak height statistics in quantum dots

    Full text link
    Within random matrix theory for quantum dots, both the dot's one-particle eigenlevels and the dot-lead couplings are statistically distributed. While the effect of the latter on the conductance is obvious and has been taken into account in the literature, the statistical distribution of the one-particle eigenlevels is generally replaced by a picket-fence spectrum. Here we take the random matrix theory eigenlevel distribution explicitly into account and observe significant deviations in the conductance distribution and magnetoconductance of closed quantum dots at experimentally relevant temperatures.Comment: 3 pages, 2 figure

    Statistics of Coulomb blockade peak spacings for a partially open dot

    Full text link
    We show that randomness of the electron wave functions in a quantum dot contributes to the fluctuations of the positions of the conductance peaks. This contribution grows with the conductance of the junctions connecting the dot to the leads. It becomes comparable with the fluctuations coming from the randomness of the single particle spectrum in the dot while the Coulomb blockade peaks are still well-defined. In addition, the fluctuations of the peak spacings are correlated with the fluctuations of the conductance peak heights.Comment: 13 pages, 1 figur

    Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling

    Full text link
    The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose spacings fluctuate with the number of electrons. We derive the temperature-dependence of these fluctuations in the statistical regime and compare with recent experimental results. The scrambling due to Coulomb interactions of the single-particle spectrum with the addition of an electron to the dot is shown to affect the temperature-dependence of the peak spacing fluctuations. Spectral scrambling also leads to saturation in the temperature dependence of the peak-to-peak correlator, in agreement with recent experimental results. The signatures of scrambling are derived using discrete Gaussian processes, which generalize the Gaussian ensembles of random matrices to systems that depend on a discrete parameter -- in this case, the number of electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe

    Testing the SOC hypothesis for the magnetosphere

    Get PDF
    As noted by Chang, the hypothesis of Self-Organised Criticality provides a theoretical framework in which the low dimensionality seen in magnetospheric indices can be combined with the scaling seen in their power spectra and the recently-observed plasma bursty bulk flows. As such, it has considerable appeal, describing the aspects of the magnetospheric fuelling:storage:release cycle which are generic to slowly-driven, interaction-dominated, thresholded systems rather than unique to the magnetosphere. In consequence, several recent numerical "sandpile" algorithms have been used with a view to comparison with magnetospheric observables. However, demonstration of SOC in the magnetosphere will require further work in the definition of a set of observable properties which are the unique "fingerprint" of SOC. This is because, for example, a scale-free power spectrum admits several possible explanations other than SOC. A more subtle problem is important for both simulations and data analysis when dealing with multiscale and hence broadband phenomena such as SOC. This is that finite length systems such as the magnetosphere or magnetotail will by definition give information over a small range of orders of magnitude, and so scaling will tend to be narrowband. Here we develop a simple framework in which previous descriptions of magnetospheric dynamics can be described and contrasted. We then review existing observations which are indicative of SOC, and ask if they are sufficient to demonstrate it unambiguously, and if not, what new observations need to be made?Comment: 29 pages, 0 figures. Based on invited talk at Spring American Geophysical Union Meeting, 1999. Journal of Atmospheric and Solar Terrestrial Physics, in pres

    The rare cancer network: ongoing studies and future strategy.

    Get PDF
    The Rare Cancer Network (RCN) was formed in the early 1990's to create a global network that could pool knowledge and resources in the studies of rare malignancies whose infrequency prevented both their study with prospective clinical trials. To date, the RCN has initiated 74 studies resulting in 46 peer reviewed publications. The First International Symposium of the Rare Cancer Network took place in Nice in March of 2014. Status updates and proposals for new studies were heard for fifteen topics. Ongoing studies continue for cardiac sarcomas, thyroid cancers, glomus tumors, and adult medulloblastomas. New proposals were presented at the symposium for primary hepatic lymphoma, solitary fibrous tumors, Rosai-Dorfman disease, tumors of the ampulla of Vater, salivary gland tumors, anorectal melanoma, midline nuclear protein in testes carcinoma, pulmonary lymphoepithelioma-like carcinoma, adenoid cystic carcinoma of the trachea, osteosarcomas of the mandible, and extra-cranial hemangiopericytoma. This manuscript presents the abstracts of those proposals and updates on ongoing studies, as well a brief summary of the vision and future of the RCN

    Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots

    Full text link
    We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using Berry's conjecture, we calculate the peak height distributions and the correlation functions. We demonstrate that the corrections to the corresponding results of the standard statistical theory are non-universal and can be expressed in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both symmetric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distribution of peak heights, but are clearly seen in the correlation function or power spectrum. For non-zero temperature, the correlation function obtained theoretically is in good agreement with that measured experimentally.Comment: 5 color eps figure

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change
    corecore