118 research outputs found
Rapid detection of epidermal growth factor receptor mutations with multiplex PCR and primer extension in lung cancer
Epidermal growth factor receptor (EGFR) kinase domain mutations hyperactivate the kinase and confer kinase addiction of the non-small-cell lung cancer (NSCLC) tumor cells. Almost all of these mutations are located within exons 18-21. The -216 single nucleotide polymorphism in the promoter region is associated with increased EGFR production. We present a method for detecting these common mutations in 81 cases of NSCLC. The protocol is based on the multiplex amplification of promoter region and exons 18-21 of the EGFR genes in a single tube, followed by primer extension of the PCR products using various sizes of primers to detect base changes at -216 promoter region and codons 719, 746-750, 790, 858 of the EGFR gene. We compared the results with that from direct sequencing for detecting EGFR mutations in 81 cases of NSCLC. The two methods identified the same 26 mutations, but our method is superior to direct sequencing in terms of the amount of work and time required. We presented a simple and fast method to detect mutations of EGFR genes in NSCLC
Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif
<p>Abstract</p> <p>Background</p> <p>Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (<it>ETFDH</it>) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity.</p> <p>Results</p> <p>High resolution melting (HRM) analysis and sequencing of the entire <it>ETFDH </it>gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site.</p> <p>Conclusions</p> <p>Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.</p
A Genetic Polymorphism (rs17251221) in the Calcium-Sensing Receptor Gene (CASR) Is Associated with Stone Multiplicity in Calcium Nephrolithiasis
Calcium nephrolithiasis is one of the most common causes of renal stones. While the prevalence of this disease has increased steadily over the last 3 decades, its pathogenesis is still unclear. Previous studies have indicated that a genetic polymorphism (rs17251221) in the calcium-sensing receptor gene (CASR) is associated with the total serum calcium levels. In this study, we collected DNA samples from 480 Taiwanese subjects (189 calcium nephrolithiasis patients and 291 controls) for genotyping the CASR gene. Our results indicated no significant association between the CASR polymorphism (rs17251221) and the susceptibility of calcium nephrolithiasis. However, we found a significant association between rs17251221 and stone multiplicity. The risk of stone multiplicity was higher in patients with the GG+GA genotype than in those with the AA genotype (chi-square test:P = 0.008;odds ratio = 4.79;95% confidence interval, 1.44–15.92;Yates' correction for chi-square test:P = 0.013). In conclusion, our results provide evidence supporting the genetic effects of CASR on the pathogenesis of calcium nephrolithiasis
Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells
<p>Abstract</p> <p>Background</p> <p>Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected <it>aurora B </it>and <it>MSK1 </it>as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation.</p> <p>Methods</p> <p>GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry.</p> <p>Results</p> <p>Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G<sub>1 </sub>phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p) and H3S28 (H3S28p) in association with the downregulation of aurora B and pMSK1 expressions.</p> <p>Conclusions</p> <p>This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.</p
Small Molecule Amiloride Modulates Oncogenic RNA Alternative Splicing to Devitalize Human Cancer Cells
Alternative splicing involves differential exon selection of a gene transcript to generate mRNA and protein isoforms with structural and functional diversity. Abnormal alternative splicing has been shown to be associated with malignant phenotypes of cancer cells, such as chemo-resistance and invasive activity. Screening small molecules and drugs for modulating RNA splicing in human hepatocellular carcinoma cell line Huh-7, we discovered that amiloride, distinct from four pH-affecting amiloride analogues, could “normalize” the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts. Our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF, and decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, and increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulates kinases and up-regulates phosphatases in the signal pathways known to affect splicing factor protein phosphorylation. These amiloride effects of “normalized” oncogenic RNA splicing and splicing factor hypo-phosphorylation were both abrogated by pre-treatment with a PP1 inhibitor. Global exon array of amiloride-treated Huh-7 cells detected splicing pattern changes involving 584 exons in 551 gene transcripts, many of which encode proteins playing key roles in ion transport, cellular matrix formation, cytoskeleton remodeling, and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. Other human solid tumor and leukemic cells, but not a few normal cells, showed similar amiloride-altered RNA splicing with devitalized consequence. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of RNA splicing for cancer therapeutics
Treatment of Spinal Muscular Atrophy by Sodium Butyrate
[[abstract]]Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by degeneration of the anterior horn cells of the spinal cord, leading to muscular paralysis with muscular atrophy. No effective treatment of this disorder is presently available. Studies of the correlation between disease severity and the amount of survival motor neuron (SMN) protein have shown an inverse relationship. We report that sodium butyrate effectively increases the amount of exon 7-containing SMN protein in SMA lymphoid cell lines by changing the alternative splicing pattern of exon 7 in the SMN2 gene. In vivo, sodium butyrate treatment of SMA-like mice resulted in increased expression of SMN protein in motor neurons of the spinal cord and resulted in significant improvement of SMA clinical symptoms. Oral administration of sodium butyrate to intercrosses of heterozygous pregnant knockout-transgenic SMA-like mice decreased the birth rate of severe types of SMA-like mice, and SMA symptoms were ameliorated for all three types of SMA-like mice. These results suggest that sodium butyrate may be an effective drug for the treatment of human SMA patients
- …