18 research outputs found

    A Novel Peptide Derived from Human Pancreatitis-Associated Protein Inhibits Inflammation In Vivo and In Vitro and Blocks NF-Kappa B Signaling Pathway

    Get PDF
    BACKGROUND: Pancreatitis-associated protein (PAP) is a pancreatic secretory protein belongs to the group VII of C-type lectin family. Emerging evidence suggests that PAP plays a protective effect in inflammatory diseases. In the present study, we newly identified a 16-amino-acid peptide (named PAPep) derived from C-type lectin-like domain (CTLD) of human PAP with potent anti-inflammatory activity using both in vivo and in vitro assays. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the anti-inflammatory effect of PAPep on endotoxin-induced uveitis (EIU) in rats and demonstrated that intravitreal pretreatment of PAPep concentration-dependently attenuated clinical manifestation of EIU rats, reduced protein leakage and cell infiltration into the aqueous humor (AqH), suppressed tumor necrosis factor (TNF)-α, interleukin (IL)-6, intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein (MCP)-1 production in ocular tissues, and improved histopathologic manifestation of EIU. Furthermore, PAPep suppressed the LPS-induced mRNA expression of TNF-α and IL-6 in RAW 264.7 cells, inhibited protein expression of ICAM-1 in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) as well as U937 cells adhesion to HUVECs. Western blot analysis in ocular tissues and different cell lines revealed that the possible mechanism for this anti-inflammatory effect of PAPep may depend on its ability to inhibit the activation of NF-kB signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the sequence of PAPep is within the critically active region for the anti-inflammatory function of PAP and the peptide may be a promising candidate for the management of ocular inflammatory diseases

    Serotonergic 5-HT1A receptor agonist (8-OH-DPAT) ameliorates impaired micturition reflexes in a chronic ventral root avulsion model of incomplete cauda equina/conus medullaris injury

    No full text
    Trauma to the thoracolumbar spine commonly results in injuries to the cauda equina and the lumbosacral portion of the spinal cord. Both complete and partial injury syndromes may follow. Here, we tested the hypothesis that serotonergic modulation may improve voiding function after an incomplete cauda equina/conus medullaris injury. For this purpose, we used a unilateral L5-S2 ventral root avulsion (VRA) injury model in the rat to mimic a partial lesion to the cauda equina and conus medullaris. Compared to a sham-operated series, comprehensive urodynamic studies demonstrated a markedly reduced voiding efficiency at 12 weeks after the VRA injury. Detailed cystometrogram studies showed injury-induced decreased peak bladder pressures indicative of reduced contractile properties. Concurrent external urethral sphincter (EUS) electromyography demonstrated shortened burst and prolonged silent periods associated with the elimination phase. Next, a 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), was administered intravenously at 12 weeks after the unilateral L5-S2 VRA injury. Both voiding efficiency and maximum intravesical pressure were significantly improved by 8-OH-DPAT (0.3-1.0 mg/kg). 8-OH-DPAT also enhanced the amplitude of EUS tonic and bursting activity as well as duration of EUS bursting and silent period during EUS bursting. The results indicate that 8-OH-DPAT improves voiding efficiency and enhances EUS bursting in rats with unilateral VRA injury. We conclude that serotonergic modulation of the 5-HT1A receptor may represent a new strategy to improve lower urinary tract function after incomplete cauda equina/conus medullaris injuries in experimental studies

    The Suitability of Propofol Compared with Urethane for Anesthesia during Urodynamic Studies in Rats.

    No full text
    Urethane anesthesia preserves many reflex functions and is often the preferred anesthetic for urodynamic studies in rats. Because of the toxicity profile of urethane, its use as an anesthetic typically is limited to acute and terminal investigations. Alternative anesthetic options are needed for longitudinal studies of micturition reflexes in rats. In this study, we evaluated propofol anesthesia administered at constant rate infusion at different planes of anesthesia in rats for combined cystometrography and external urethral sphincter (EUS) EMG in rats. No reflex micturition was noted after rats received 100%, 80%, or 60% of a previously reported anesthetic dose of propofol. At 40% of the standard propofol dose, a subset of rats showed reflex voiding, with bladder contractions and associated EUS EMG activity. In contrast, urethane anesthesia at a surgical plane allowed for reflex voiding with bladder contractions and EUS activation. Latency to leaking or voiding was longer in rats under propofol anesthesia than in those under urethane anesthesia. In a subset of rats with reflex voiding under propofol anesthesia, voiding efficiency was decreased compared with that of rats anesthetized with urethane. We conclude that propofol anesthesia suppresses micturition reflexes in rats more efficiently than did urethane. Propofol is a suitable anesthetic for longitudinal studies in rats, but its use for urodynamic evaluations is limited in these animals due to its marked suppression of both bladder contractions and EUS EMG activation
    corecore