876 research outputs found

    Rejuvenating nerve cells in adults

    Get PDF
    Like mammalian neurons, C. elegans neurons lose regeneration ability as they age, but it is not known why. C. elegans is a soil worm with its brain wiring diagram being mapped entirely - every connection between every nerve cell. Forty percent of genes identified in the worm genome have a counterpart in humans. Genes that allow neurons to connect with each other to form functional neuronal circuits and to regenerate themselves after injury are highly similar between worms and humans. Thus, what we learn in worms will likely be relevant to the development and regeneration of the human nervous system. The let-7 microRNA and its target, the LIN-41 tripartite motif protein, were recently shown to function as neuronal timers in worms to time the decline of the ability of neurons to regenerate as they age [1]. The progressive increase of let-7 and the progressive decrease of lin-41 in neurons provide intrinsic timing mechanism [1]

    Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging

    Get PDF
    © 2014 Chang et al. Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.published_or_final_versio

    CUSTOMER READINESS, MARKET ORIENTATION AND TRANSACTION FREQUENCY IN MOBILE BANKING SERVICE RECOVERY

    Get PDF
    This study investigates the effect of internet banking service recovery satisfaction on future intention toward using mobile banking, and examines transaction frequency as a moderator of this relationship. Moreover, this study applies customer participation in service recovery and service recovery experience as the influential factors of service recovery satisfaction. Questionnaires were obtained 419 respondents with internet banking and service recovery experience. The results of SEM analysis illustrate that both role clarity and ability of service recovery can affect the level of service recovery participation. Additionally, the internet banking service provider’s responsive and proactive customer orientation can influence customer service recovery experience, which further increases service recovery satisfaction. Recovery satisfaction can thus affect future intention toward using mobile banking. The moderating effect of transaction frequency was also confirmed. Theoretical and managerial implications are discussed

    Precise regulation of the guidance receptor DMA-1 by KPC-1/Furin instructs dendritic branching decisions

    Get PDF
    Extracellular adhesion molecules and their neuronal receptors guide the growth and branching of axons and dendrites. Growth cones are attracted to intermediate targets, but they must switch their response upon arrival so that they can move away and complete the next stage of growth. Here, we show that KPC-1, a C. elegans Furin homolog, regulates the level of the branching receptor DMA-1 on dendrites by targeting it to late endosomes. In kpc-1 mutants, the level of DMA-1 is abnormally high on dendrites, resulting in trapping of dendrites at locations where a high level of the cognate ligand, the adhesion molecule SAX-7/L1, is present. The misregulation of DMA-1 also causes dendritic self-avoidance defects. Thus, precise regulation of guidance receptors creates flexibility of responses to guidance signals and is critical for neuronal morphogenesis

    Engulfing cells promote neuronal regeneration and remove neuronal debris through distinct biochemical functions of CED-1

    Get PDF
    Two important biological events happen coincidently soon after nerve injury in the peripheral nervous system in C. elegans: removal of axon debris and initiation of axon regeneration. But, it is not known how these two events are co-regulated. Mutants of ced-1, a homolog of Draper and MEGF10, display defects in both events. One model is that those events could be related. But our data suggest that they are actually separable. CED-1 functions in the muscle-type engulfing cells in both events and is enriched in muscle protrusions in close contact with axon debris and regenerating axons. Its two functions occur through distinct biochemical mechanisms; extracellular domain-mediated adhesion for regeneration and extracellular domain binding-induced intracellular domain signaling for debris removal. These studies identify CED-1 in engulfing cells as a receptor in debris removal but as an adhesion molecule in neuronal regeneration, and have important implications for understanding neural circuit repair after injury

    Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (<it>ETFDH</it>) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity.</p> <p>Results</p> <p>High resolution melting (HRM) analysis and sequencing of the entire <it>ETFDH </it>gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site.</p> <p>Conclusions</p> <p>Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability.</p
    corecore