5,280 research outputs found

    Concept-Oriented Deep Learning with Large Language Models

    Full text link
    Large Language Models (LLMs) have been successfully used in many natural-language tasks and applications including text generation and AI chatbots. They also are a promising new technology for concept-oriented deep learning (CODL). However, the prerequisite is that LLMs understand concepts and ensure conceptual consistency. We discuss these in this paper, as well as major uses of LLMs for CODL including concept extraction from text, concept graph extraction from text, and concept learning. Human knowledge consists of both symbolic (conceptual) knowledge and embodied (sensory) knowledge. Text-only LLMs, however, can represent only symbolic (conceptual) knowledge. Multimodal LLMs, on the other hand, are capable of representing the full range (conceptual and sensory) of human knowledge. We discuss conceptual understanding in visual-language LLMs, the most important multimodal LLMs, and major uses of them for CODL including concept extraction from image, concept graph extraction from image, and concept learning. While uses of LLMs for CODL are valuable standalone, they are particularly valuable as part of LLM applications such as AI chatbots

    Variational Quantum Kernels with Task-Specific Quantum Metric Learning

    Full text link
    Quantum kernel methods, i.e., kernel methods with quantum kernels, offer distinct advantages as a hybrid quantum-classical approach to quantum machine learning (QML), including applicability to Noisy Intermediate-Scale Quantum (NISQ) devices and usage for solving all types of machine learning problems. Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space. For machine learning, the notion of similarity assumes that points close in the feature space should be close in the machine learning task space. In this paper, we discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings (a.k.a. quantum feature encodings) that are specific to machine learning tasks. Such task-specific optimal quantum embeddings, implicitly supporting feature selection, are valuable not only to quantum kernel methods in improving the latter's performance, but they can also be valuable to non-kernel QML methods based on parameterized quantum circuits (PQCs) as pretrained embeddings and for transfer learning. This further demonstrates the quantum utility, and quantum advantage (with classically-intractable quantum embeddings), of quantum kernel methods

    Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints

    Full text link
    Objective: The purpose of this manuscript is to accelerate cardiac diffusion tensor imaging (CDTI) by integrating low-rankness and compressed sensing. Methods: Diffusion-weighted images exhibit both transform sparsity and low-rankness. These properties can jointly be exploited to accelerate CDTI, especially when a phase map is applied to correct for the phase inconsistency across diffusion directions, thereby enhancing low-rankness. The proposed method is evaluated both ex vivo and in vivo, and is compared to methods using either a low-rank or sparsity constraint alone. Results: Compared to using a low-rank or sparsity constraint alone, the proposed method preserves more accurate helix angle features, the transmural continuum across the myocardium wall, and mean diffusivity at higher acceleration, while yielding significantly lower bias and higher intraclass correlation coefficient. Conclusion: Low-rankness and compressed sensing together facilitate acceleration for both ex vivo and in vivo CDTI, improving reconstruction accuracy compared to employing either constraint alone. Significance: Compared to previous methods for accelerating CDTI, the proposed method has the potential to reach higher acceleration while preserving myofiber architecture features which may allow more spatial coverage, higher spatial resolution and shorter temporal footprint in the future.Comment: 11 pages, 16 figures, published on IEEE Transactions on Biomedical Engineerin
    • …
    corecore