2,582 research outputs found

    Revisiting the Bs(∗)B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs(∗)B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+g→Bs(∗)+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉ→Bs(∗)+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+s→Bs(∗)+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs(∗)B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs(∗)B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs(∗)B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs(∗)B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    PHP62 Establish Drugs Optimal Purchase Model

    Get PDF

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays Bc→Ds(1968)ℓℓˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and Bc→Ds∗(2317)ℓℓˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Sample Path Large Deviations for Heavy-Tailed Lévy Processes and Random Walks

    Get PDF
    Let XX be a L\'evy process with regularly varying L\'evy measure ν\nu. We obtain sample-path large deviations of scaled processes Xˉn(t)≜X(nt)/n\bar X_n(t) \triangleq X(nt)/n and obtain a similar result for random walks. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen. In addition, we investigate connections with the classical large-deviations framework. In that setting, we show that a weak large deviations principle (with logarithmic speed) holds, but a full large-deviations principle does not hold

    Perturbative QCD analysis of B→ϕK∗B \to \phi K^* decays

    Full text link
    We study the first observed charmless B→VVB\to VV modes, the B→ϕK∗B\to\phi K^* decays, in perturbative QCD formalism. The obtained branching ratios B(B→ϕK∗)∼15×10−6B(B\to\phi K^*)\sim 15 \times 10^{-6} are larger than ∼9×10−6\sim 9\times 10^{-6} from QCD factorization. The comparison of the predicted magnitudes and phases of the different helicity amplitudes, and branching ratios with experimental data can test the power counting rules, the evaluation of annihilation contributions, and the mechanism of dynamical penguin enhancement in perturbative QCD, respectively.Comment: 14 pages, 2 tables, brief disscussion on hard sacle added, version to appear in PR
    • …
    corecore