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and Random Walks

Chang-Han Rhee1,3 Jose Blanchet2,4 Bert Zwart1,3

June 10, 2016

Abstract

Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations
of scaled processes X̄n(t) , X(nt)/n and obtain a similar result for random walks. Our results yield
detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to
make a rare event happen. In addition, we investigate connections with the classical large-deviations
framework. In that setting, we show that a weak large deviations principle (with logarithmic speed)
holds, but a full large-deviations principle does not hold.
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1 Introduction

In this paper, we develop sample-path large deviations for one-dimensional Lévy processes and random
walks, assuming the jump sizes are heavy-tailed. Specifically, let X(t), t ≥ 0, be a centered Lévy process.
Assume that P(X(1) > x) is regularly varying of index −α, and that P(X(1) < −x) is regularly varying
of index −β; i.e. there exist slowly varying functions L+ and L− such that

P(X(1) > x) = L+(x)x
−α, P(X(1) < −x) = L−(x)x

−β . (1.1)

Throughout the paper, we assume α, β > 1. We also consider spectrally one-sided processes; in that case
only α plays a role. Define X̄n = {X̄n(t), t ∈ [0, 1]}, with X̄n(t) = X(nt)/n, t ≥ 0. We are interested in
large deviations of X̄n.

This topic fits well in a branch of limit theory that has a long history, has intimate connections to
point processes and extreme value theory, and is still a subject of intense activity. The investigation of
tail estimates of the one-dimensional distributions of X̄n (or random walks with heavy-tailed step size
distribution) was initiated in Nagaev (1969, 1977). The state of the art of such results is well summarized
in Borovkov and Borovkov (2008); Denisov et al. (2008); Embrechts et al. (1997); Foss et al. (2011). In
particular, Denisov et al. (2008) describe in detail how fast x needs to grow with n for the asymptotic
relation

P(X(n) > x) = nP(X(1) > x)(1 + o(1)) (1.2)
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to hold, as n → ∞, in settings that go beyond (1.1). If (1.2) is valid, the so-called principle of one
big jump is said to hold. A functional version of this insight has been derived in Hult et al. (2005). A
significant number of studies investigate the question if and how the principle of a single big jump is
affected by the impact of (various forms of) dependence, and cover stable processes, autoregressive pro-
cesses, modulated processes, and stochastic differential equations; see Buraczewski et al. (2013); Foss et al.
(2007); Hult and Lindskog (2007); Konstantinides and Mikosch (2005); Mikosch and Wintenberger (2013);
Mikosch and Samorodnitsky (2000); Samorodnitsky (2004).

The problem we investigate in this paper is markedly different from all of these works. Our aim is
to develop asymptotic estimates of P(X̄n ∈ A) for a sufficiently general collection of sets A, so that it is
possible to study continuous functionals of X̄n in a systematic manner. For many of such functionals, and
many sets A, the associated rare event will not be caused by a single big jump, but multiple jumps. The
results in this domain (e.g. Blanchet and Shi (2012); Foss and Korshunov (2012); Zwart et al. (2004)) are
few, each with an ad-hoc approach. As in large-deviations theory for light tails, it is desirable to have more
general tools available.

Another aspect of heavy-tailed large deviations we aim to clarify in this paper is the connection with
the standard large-deviations approach, which has not been touched upon in any of the above-mentioned
references. In our setting, the goal would be to obtain a function I such that

− inf
ξ∈A◦

I(ξ) ≤ lim inf
n→∞

logP(X̄n ∈ A)

logn
≤ lim sup

n→∞

logP(X̄n ∈ A)

logn
≤ − inf

ξ∈A−
I(ξ), (1.3)

where A◦ and A− are the interior and closure of A; all our large deviations results are derived in the
Skorokhod J1 topology. Equation (1.3) is a classical large deviations principle (LDP) with sub-linear speed
(cf. Dembo and Zeitouni (2009)). Using existing results in the literature (e.g. Denisov et al. (2008)), it is
not difficult to show that X(n)/n = X̄n(1) satisfies an LDP with rate function I1 = I1(x) which is 0 at 0,
equal to (α−1) if x > 0, and (β−1) if x < 0. This is a lower-semicontinuous function of which the level sets
are not compact. Thus, in large-deviations terminology, I1 is a rate function, but is not a good one. This
implies that techniques such as the projective limit approach cannot be applied. In fact, in Section (4.3), we
show that there does not exist an LDP of the form (1.3) for general sets A, by giving a counterexample. A
version of (1.3) for compact sets is derived in Section 4.2, as a corollary of our main results. A result similar
to (1.3) for random walks with semi-exponential (Weibullian) tails has been derived in Gantert (1998)
(see also Gantert (2000); Gantert et al. (2014) for related results). Though an LDP for finite-dimensional
distributions can be derived, lack of exponential tightness also persists at the sample-path level. To make
the rate function good (i.e., to have compact level sets), a topology chosen in Gantert (1998) is considerably
weaker than any of the Skorokhod topologies (but sufficient for the application that is central in that work).

The approach followed in the present paper is based on the recent developments in the theory of regular
variation. In particular, in Lindskog et al. (2014), the classical notion of regular variation is re-defined
through a new convergence concept called M-convergence (this is in itself a refinement of other reformula-
tions of regular variation in function spaces; see de Haan and Lin (2001); Hult and Lindskog (2005, 2006)).
In Section 2, we further investigate the M-convergence framework by deriving a number of general results
that facilitate the development of our proofs.

This paves the way towards our main large deviations results, which are presented in Section 3. We
actually obtain estimates that are sharper than (1.3), though we impose a condition on A. For one-sided
Lévy processes, our result takes the form

CJ (A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ lim sup

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ CJ (A)(A

−). (1.4)

Precise definitions can be found in Section 3.1; for now it is important to note that the function J (A)
is defined as infξ∈A∩D↑s D+(ξ), with D+(ξ) the number of discontinuites of ξ, and D

↑
s the set of all non-

increasing step functions vanishing at the origin. Throughout the paper, we adopt the convention that the
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infimum over an empty set is ∞. Letting Dj and D6j be the sets of step functions vanishing at the origin
with precisely j and at most j steps respectively, we note that the measure Cj , defined on D\D6j−1 has its
support on Dj . A crucial assumption for (1.4) to hold is that the Skorokhod J1 distance between the sets
A and D6J (A)−1 is strictly positive. For A such that J (A) = 1 this result has been shown in Hult et al.
(2005). The interpretation of the “rate function” J (A) is that it provides the number of jumps in the Lévy
process that are necessary to make the event A happen. This can be seen as an extension of the principle
of a single big jump to multiple jumps. A rigorous statement on when (1.4) holds can be found in Theorem
3.1, which is the first main result of the paper.

The result that comes closest to (1.4) is Theorem 5.1 in Lindskog et al. (2014) which considers the
M-convergence of ν[n,∞)−jP(X/n ∈ A). This result could be used as a starting point to investigate rare
events that happen on a time-scale of O(1). However, in the large-deviations scaling we consider rare
events happen on a time-scale of O(n). Controlling the Lévy process on this larger time-scale requires more
delicate estimates, eventually leading to a an additional factor nj in the asymptotic estimates. We further
show that the choice j = J (A) is the only choice that leads to a non-trivial limit.

In Section 3.2 we present sample-path large deviations for two-sided Lévy processes. Our main results
in this case are Theorems 3.3–3.5. In the two-sided case, we need to resolve significant combinatorial issues
which do not appear in the one sided case. The polynomial rate of decay for P(X̄n ∈ A) described by the
function J (A) in the one-sided case has a more complicated description; the corresponding polynomial rate
in the two-sided case is

inf
ξ,ζ∈D↑s ; ξ−ζ∈A

(α − 1)D+(ξ) + (β − 1)D+(ζ). (1.5)

Note that this is a result that one could expect from the result for one-sided Lévy processes and a heuristic
application of the contraction principle. A rigorous treatment of the two-sided case requires a more delicate
argument compared to the one-sided case: in the one-sided case, the argument simplifies since if one
takes j largest jumps away from X̄n, then the probability that the residual process is of significant size
is o

(

(nν[n,∞))j
)

so that it doesn’t contribute in (1.4) while in two-sided case taking j largest upward
jumps and k largest downward jumps from X̄n doesn’t guarantee that the residual process remains small
with high enough probability—i.e., the probability that the residual process is of significant size cannot
be bounded by o

(

(nν[n,∞))j(nν(−∞,−n])k
)

. In addition, it may be the case that multiple pairs (j, k) of
jumps lead to optimal solutions of (1.5). One useful notion that we develop and rely on in our setting is a
form of asymptotic equivalence which can best be compared with exponential equivalence in classical large
deviations theory.

We derive analogous results for random walks in Section 4.1. Random walks cannot be decomposed into
independent components with small jumps and large jumps as easily as Lévy processes, making the analysis
of random walks more technical if done directly. However, it is possible to follow an indirect approach.
Given a random walk Sk, k ≥ 0, one can study a subordinated version SN(t), t ≥ 0 with N(t), t ≥ 0 an
independent unit rate Poisson process. The Skorokhod J1 distance between rescaled versions of Sk, k ≥ 0
and SN(t), t ≥ 0 can then be bounded in terms of the deviations of N(t) from t, which have been studied
thoroughly. We have not seen this generally applicable idea in other studies.

We prove an LDP of the form (1.3) in Section 4.2, where the upper bound requires a compactness
assumption. We construct a counterexample showing that the compactness assumption cannot be totally
removed, and thus, a full LDP does not hold. Essentially, if a rare event is caused by j big jumps, then
the framework developed in this paper applies if each of these jumps is bounded away from below by a
strictly positive constant. Our counterexample in Section 4.3 indicates that it is not trivial to remove this
condition.

As one may expect, it is not possible to apply classical variational methods to derive an expression for
the exponent J (A), as is often the case in large deviations for light tails. Nevertheless, there seems to be
a generic connection with a class of control problems called impulse control problems. Equation (1.5) is a
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specific deterministic impulse-control problem, which is related to Barles (1985). We expect that techniques
similar to those in Barles (1985) will be useful to characterize optimality of solutions to problems like (1.5).

The latter challenge is not taken up in the present study. Instead, in Section 5, we analyse (1.5) directly
in a few specific applications. In particular, we consider two applications to financial mathematics, involving
the computation of a Value-at-Risk (VaR) measure (Section 5.1), and the valuation of a specific exotic option
(Section 5.2). We also demonstrate how to explicitly solve (1.5) in the case whereA = {ξ : l(t) ≤ ξ(t) ≤ u(t)}
for some function l and u in Section 5.3. Last, in Section 5.4 we illustrate how to deal with the case where
(1.5) has multiple minima.

In each of these examples, a condition needs to be checked to see whether our framework is applicable.
We provide a general result that essentially states that we only need to check this condition for step functions
in A, which makes this check rather easy in applications. The applications in the present paper mainly serve
to illustrate our main results. More involved applications to Lévy-driven stochastic differential equations,
stable processes, Markov additive processes, traffic networks, and rare event simulation now seem to be
within reach, and will be considered elsewhere.

In summary, this paper is organized as follows. After developing some preliminary results in Section 2,
we present our main results in Section 3. Applications to random walks and connections with classical large
deviations theory are investigated in Section 4. In Section 5, we consider four applications of our main
results. The remaining sections are devoted to proofs. We collect some useful bounds in Appendix A, and
Appendix B gives an overview of all notational conventions that are introduced throughout the paper.

2 M-convergence

This section reviews and develops general concepts and tools that are needed to derive our large devia-
tions results. The proofs of the lemmas and corollaries stated throughout this section are deferred until
Section 6.1. We start with briefly reviewing the notion of M-convergence, introduced in Lindskog et al.
(2014).

Let (S, d) be a complete separable metric space, and S be the Borel σ-algebra on S. Given a closed
subset C of S, let S\C be equipped with the relative topology as a subspace of S, and consider the associated
sub σ-algebra SS\C , {A : A ⊆ S \ C, A ∈ S } on it. Define Cr , {x ∈ S : d(x,C) < r} for r ≥ 0, and
let M(S \ C) be the class of measures defined on SS\C whose restrictions to S \ Cr are finite for all r > 0.

Topologize M(S \C) with a sub-basis
{

{ν ∈ M(S \C) : ν(f) ∈ G}: f ∈ CS\C, G open in R+

}

where CS\C is
the set of real-valued, non-negative, bounded, continuous functions whose support is bounded away from
C (i.e., f(Cr) = {0} for some r > 0). A sequence of measures µn ∈ M(S \ C) converges to µ ∈ M(S \ C)
if µn(f) → µ(f) for each f ∈ CS\C. Note that this notion of convergence in M(S \ C) coincides with the
classical notion of weak convergence of measures (Billingsley, 2013) if C is an empty set. An important
characterization of M(S \ C)-convergence is as follows:

Result 1 (Theorem 2.1 of Lindskog et al., 2014). Let µ, µn ∈ M(S \ C). Then µn → µ in M(S \ C) as
n→ ∞ if and only if

lim sup
n→∞

µn(F ) ≤ µ(F ) (2.1)

for all closed F ∈ SS\C bounded away from C and

lim inf
n→∞

µn(G) ≥ µ(G) (2.2)

for all open G ∈ SS\C bounded away from C.

We now introduce a new notion of equivalence between two families of random objects, which will prove
to be useful in Section 3.1, and Section 3.2. Let Fδ , {x ∈ S : d(x, F ) ≤ δ} and G−δ , ((Gc)δ)

c. (Compare
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these notations to Cr; note that we are using the convention that superscript implies open sets and subscript
implies closed sets.)

Definition 1. Suppose that Xn and Yn are random elements taking values in a complete separable metric
space (S, d). Yn is said to be asymptotically equivalent to Xn with respect to ǫn and C, if, for each δ > 0
and γ > 0,

lim sup
n→∞

ǫ−1n P(Xn ∈ (S \C)−γ , d(Xn, Yn) ≥ δ) = lim sup
n→∞

ǫ−1n P(Yn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ) = 0.

Remark 1. Note that the asymptotic equivalence w.r.t. C implies the asymptotic equivalence w.r.t. C′ if
C ⊆ C′. In view of this, the strongest notion of asymptotic equivalence w.r.t. a given sequence ǫn is the
one w.r.t. an empty set. In this case, the conditions for the asymptotic equivalence reduces to a simple
condition: P(d(Xn, Yn) ≥ δ) = o(ǫn) for any δ > 0. In our context, this simple condition suffices for the
case of one-sided Lévy measures in Section 3.1; however, we have to work with the case that C is not an
empty set when we deal with two-sided Lévy processes in Section 3.2.

The usefulness of this notion of equivalence comes from the following result.

Lemma 2.1. Suppose that ǫ−1n P(Xn ∈ ·) → µ(·) in M(S\C) for some sequence ǫn and a closed set C. If Yn
is asymptotically equivalent to Xn with respect to ǫn and C, then the law of Yn has the same (normalized)
limit, i.e., ǫ−1n P(Yn ∈ ·) → µ(·) in M(S \ C).

Another useful observation regarding asymptotic equivalence is that one can extend the lower and upper
bounds to more general sets, in case there are asymptotically equivalent distributions that are supported
on a subspace of the original space.

Lemma 2.2. Suppose that ǫ−1n P(Xn ∈ ·) → µ(·) in M(S \ C) for some sequence ǫn and a closed set C. In
addition, suppose that µ(S \ S0) = 0 and P(Xn ∈ S0) = 1 for each n. If Yn is asymptotically equivalent to
Xn with respect to ǫn and an empty set, then

lim inf
n→∞

P(Xn ∈ G) ≥ µ(G)

if G is open and G ∩ S0 is bounded away from C;

lim sup
n→∞

P(Xn ∈ F ) ≤ µ(F )

if F is closed and there is a δ > 0 such that Fδ ∩ S0 is bounded away from C.

This lemma is particularly important for the applications in Section 5 of this paper, where it is used
multiple times to check the validity of our main results in specific situations.

A version of the continuous mapping principle is satisfied by the convergence in M(S \ C). Let (S′, d′)
be a complete separable metric space, and let C′ be a closed subset of S′.

Result 2 (Mapping theorem; Theorem 2.3 of Lindskog et al. (2014)). Let h : (S\C,SS\C) → (S′\C′,SS′\C′)
be a measurable mapping such that h−1(A′) is bounded away from C for any A′ ∈ SS′\C′ bounded away

from C′. Then ĥ : M(S \ C) → M(S′ \ C′) defined by ĥ(ν) = ν ◦h−1 is continuous at µ provided µ(Dh) = 0,
where Dh is the set of discontinuity points of h.

We will need the following slight extension to restrict our attention to cases where the jump times of
two-sided Lévy processes do not match.

5



Lemma 2.3. Let S0 be a measurable subset of S, and h : (S0,SS0) → (S′ \ C′,S ′
S′\C′) be a measurable

mapping such that h−1(A′) is bounded away from C for any A′ ∈ SS′\C′ bounded away from C
′. Then

ĥ : M(S \ C) → M(S′ \ C′) defined by ĥ(ν) = ν ◦ h−1 is continuous at µ provided that µ(∂S0 \ Cr) = 0 and
µ(Dh \ Cr) = 0 for all r > 0, where Dh is the set of discontinuity points of h.

When we focus on Lévy processes, we are specifically interested in the case where S is R
∞↓
+ × [0, 1]∞

(or R
∞↓
+ × R

∞↓
+ × [0, 1]∞ × [0, 1]∞ in the two-sided case), where R

∞↓
+ , {x ∈ R∞+ : x1 ≥ x2 ≥ . . .},

and S′ is the Skorokhod space D = D([0, 1],R) — the space of real-valued RCLL functions on [0, 1]. We

use the usual product metrics d
R
∞↓

+
(x, y) =

∑∞
i=1

|xi−yi|∧1
2i and d[0,1]∞(x, y) =

∑∞
i=1

|xi−yi|
2i for R

∞↓
+ and

[0, 1]∞, respectively. For the finite product of metric spaces, we use the maximum metric; i.e., we use
dS1×···×Sd((x1, . . . , xd), (y1, . . . , yd)) , maxi=1,...,d dSi(xi, yi) for the product S1 × · · · × Sd of metric spaces

(Si, dSi). For D, we use the usual Skorokhod J1 metric d(x, y) , infλ∈Λ ‖λ − e‖ ∨ ‖x ◦ λ − y‖, where Λ
denotes the set of all non-decreasing homeomorphisms from [0, 1] onto itself, e denotes the identity, and ‖ ·‖
denotes the supremum norm. Let

Sj , {(x, u) ∈ R
∞↓
+ × [0, 1]∞ : 0, 1, u1, . . . , uj are all distinct}.

This set will play the role of S0 of Lemma 2.3. Define Tj : Sj → D to be Tj(x, u) =
∑j

i=1 xi1[ui,1]. Let Dj

be the subspaces of the Skorokhod space consisting of nondecreasing step functions, vanishing at the origin,
with exactly j jumps and D6j ,

⋃

0≤i≤j Di—i.e., nondecreasing step functions vanishing at the origin with

at most j jumps. Define Hj , {x ∈ R
∞↓
+ : xj > 0, xj+1 = 0}, and H6j , {x ∈ R

∞↓
+ : xj+1 = 0}. The

continuous mapping principle applies to Tm, as we can see in the following result.

Result 3 (Lemma 5.3 and Lemma 5.4 of Lindskog et al., 2014). Suppose A ⊂ D is bounded away from
D6j−1. Then, T−1j (A) is bounded away from H6j−1 × [0, 1]∞. Moreover, Tj : Sj → D is continuous.

A consequence of Result 3 and Lemma 2.3 is that one can derive a limit theorem in path space from a
limit theorem for jump sizes.

Corollary 2.1. If µn → µ in M
(

(R∞↓+ × [0, 1]∞) \ (H6j−1 × [0, 1]∞)
)

, and µ
(

Sc
j \ (H6j−1 × [0, 1]∞)r

)

= 0

for all r > 0, then µn ◦ T−1j → µ ◦ T−1j in M(D \ D6j−1).

To work with two-sided Lévy measures, we need Lemma 2.4 below, which is a two-sided analogue of
Corollary 2.1. Let Dl,m denote the subspace of the Skorokhod space consisting of step functions vanishing
at the origin with exactly l upward jumps and m downward jumps. Let Hl,m denote the product Hl ×

Hm = {(x, y) ∈ R
∞↓
+ × R

∞↓
+ : xl > 0, xl+1 = 0, ym > 0, ym+1 = 0}. Let D<j,k ,

⋃

(l,m)∈I<j,k
Dl,m and

H<j,k ,
⋃

(l,m)∈I<j,k
Hl,m, where I<j,k , {(l,m) ∈ Z

2
+ \ (j, k) : (α− 1)l+ (β − 1)m ≤ (α− 1)j + (β − 1)k}

and Z+ denotes the set of non-negative integers. Define Tj,k : Sj,k → D as

Tj,k(x, y, u, v) =

j
∑

i=1

xi1[ui,1] −
k
∑

i=1

yi1[vi,1],

where Sj,k , {(x, y, u, v) ∈ R
∞↓
+ × R

∞↓
+ × [0, 1]∞ × [0, 1]∞ : 0, 1, u1, . . . , uj , v1, . . . , vk are all distinct}.

Lemma 2.4. For j, k ≥ 0, Tj,k : Sj,k → D is continuous. Furthermore, suppose A ⊂ D is bounded
away from D<j,k. Then T−1j,k (A) is bounded away from H<j,k × [0, 1]∞ × [0, 1]∞. Therefore, if µn → µ in

M
(

(R∞↓+ ×R
∞↓
+ × [0, 1]∞× [0, 1]∞)\ (H<j,k× [0, 1]∞× [0, 1]∞)

)

and µ
(

Sc
j,k \ (H<j,k× [0, 1]∞× [0, 1]∞)r

)

= 0

for all r > 0, then µn ◦ T−1j,k → µ ◦ T−1j,k in M(D \ D<j,k).
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We next characterize convergence-determining classes for the convergence in M(S \ C).

Lemma 2.5. Suppose
(i) Ap is a π-system;
(ii) each open set G ⊆ S bounded away from C is a countable union of sets in Ap;
(iii) for each closed set F ⊆ S bounded away from C, there is a set A ∈ Ap bounded away from C such that
F ⊆ A◦ and µ(A \A◦) = 0.
If, in addition, µ ∈ M(S \ C) and µn(A) → µ(A) for every A ∈ Ap such that A is bounded away from C,
then µn → µ in M(S \ C).

Remark 2. Since S is a separable metric space, the Lindelöf property holds. Therefore, a sufficient con-
dition for assumption (ii) of Lemma 2.5 is that for every x ∈ S \ C and ǫ > 0, there is A ∈ Ap such that
x ∈ A◦ ⊆ B(x, ǫ). To see that this implies assumption (ii), note that for any given open set G, one can
construct a cover {(Ax)

◦ : x ∈ G} of G by choosing Ax so that x ∈ (Ax)
◦ ⊆ G and then extract a countable

subcover (due to the Lindelöf property) whose union is equal to G. Note also that if A in assumption (iii)
is open, then µ(A \A◦) = µ(∅) = 0 automatically.

3 Sample-Path Large Deviations

In this section, we present large-deviations results for scaled Lévy processes with heavy-tailed Lévymeasures.
Section 3.1 studies a special case, where the Lévy measure is concentrated on the positive part of the real
line, and Section 3.2 extends this result to Lévy processes with two-sided Lévy measures. In both cases, let
Xn(t) , X(nt) be a scaled process of X , where X is a Lévy process with a Lévy measure ν. Recall that
Xn has Itô representation:

Xn(s) = nsa+B(ns) +

∫

|x|≤1

x[N([0, ns]× dx)− nsν(dx)] +

∫

|x|>1

xN([0, ns]× dx), (3.1)

with a a drift parameter, B a Brownian motion, and N a Poisson random measure with mean measure
Leb×ν on [0, n]× (0,∞); Leb denotes the Lebesgue measure.

3.1 One-sided Large Deviations

Let X be a Lévy process with Lévy measure ν. In this section, we assume that ν is a regularly varying
(at infinity, with index −α < −1) Lévy measure concentrated on (0,∞). Consider a centered and scaled
process

X̄n(s) ,
1

n
Xn(s)− sa− µ+

1 ν
+
1 s,

where µ+
1 , 1

ν+
1

∫

[1,∞) xν(dx), and ν
+
1 , ν[1,∞). Let νjα denote the restriction (to R

j↓
+ ) of the j-fold product

measure of να, where να(x,∞) , x−α. Let C0(·) , δ0(·) be the Dirac measure concentrated on the zero

function. Additionally, for each j ≥ 1, define a measure Cj(·) , E
[

νjα{y ∈ (0,∞)j :
∑j

i=1 yi1[Ui,1] ∈ ·}
]

concentrated on Dj , where the random variables Ui, i ≥ 1 are i.i.d. uniform on [0, 1]. Let D↑s denote the
subset of D consisting of non-decreasing step functions vanishing at the origin, and let D+(ξ) denote the
number of upward jumps of an element ξ in D. Finally, set

J (A) , inf
ξ∈D↑s∩A

D+(ξ). (3.2)

The main result of this section is the following large-deviations theorem for X̄n.
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Theorem 3.1. Suppose that A is a measurable set. If J (A) <∞, and if A is bounded away from D6J (A)−1,
then

CJ (A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ lim sup

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)
≤ CJ (A)(A

−). (3.3)

Proof. Note first that J (A◦) > J (A) implies that A◦ doesn’t contain any element of D6J (A). Hence,
A◦ is a CJ (A)-null set, since CJ (A) is supported on D6J (A). Therefore, the lower bound holds trivially if
J (A◦) > J (A). On the other hand, J (A) = J (A−), since A is bounded away from D6J (A). In view of
these observations, we can assume w.l.o.g. that J (A◦) = J (A) = J (A−). Theorem 3.1 is now an immediate
consequence of Theorem 3.2, given below.

Remark 3. In the proof of Theorem 3.2, we establish the asymptotic equivalence (w.r.t. an empty set) of
X̄n to a process that is supported on DJ (A). Therefore, Lemma 2.2 applies, and (3.3) remains valid for all
sets A such that Aδ ∩DJ (A) is bounded away from D6J (A)−1 for some δ > 0.

Remark 4. If J (A) = ∞, and A is bounded away from D6i−1 for some i ≥ 1, then Theorem 3.2 applies
with j = i to give that (nν[n,∞))−iP(X̄n ∈ A) → 0.

Theorem 3.2. For each j ≥ 0,
(nν[n,∞))−jP(X̄n ∈ ·) → Cj(·), (3.4)

in M(D \ D6j−1), as n→ ∞.

Proof Sketch. The proof of Theorem 3.2 is based on establishing the asymptotic equivalence of X̄n and the
process obtained by just keeping its j biggest jumps, which we will denote by Ĵ6j

n in Section 6. Such an
equivalence is established via Proposition 6.1, and Proposition 6.2. Then, Proposition 6.3 identifies the limit
of Ĵ6j

n , which coincides with the limit in (3.4). The full proof of Theorem 3.2 is provided in Section 6.2.

Theorem 3.1 dictates the “right” choice of j in Theorem 3.2 for which (3.4) can lead to a limit in (0,∞).
We conclude this section with an investigation of a sufficient condition for Cj-continuity; i.e., we provide a
sufficient condition on A which guarantees Cj(∂A) = 0. The latter property implies

Cj(A
◦) = Cj(A) = Cj(A

−), (3.5)

implying that the liminf and limsup in our asymptotic estimates yield the same result. Assume that A is
a subset of Dj bounded away from D6j−1; i.e., d(A,D6j−1) > γ for some γ > 0. Consider a path ξ ∈ A.
Note that every ξ ∈ Dj is determined by the pair of jump sizes and jump times (x, u) ∈ (0,∞)j × [0, 1]j;

i.e., ξ(t) =
∑j

i=1 xi1[ui,1](t). Formally, we define a mapping T̂j : Ŝj → Dj by T̂j(x, u) =
∑j

i=1 xi1[ui,1],

where Ŝj , {(x, u) ∈ R
j↓
+ × [0, 1]j : 0, 1, u1, . . . , uj are all distinct}. Since d(A,D6j−1) > γ, we know that

T̂j(x, u) ∈ A implies x ∈ (γ,∞)j ; see Lemma 6.4. In view of this, we can see that (3.5) holds if the

Lebesgue measure of T̂−1j (∂A) is 0 since Cj(A) =
∫

(x,u)∈T̂−1
j (A) dudν

j
α(x). As we will see in Section 5, one

of the typical settings that arises in applications is that the set A can be written as a finite combination
of unions and intersections of φ−11 (A1), . . . , φ

−1
m (Am), where each φi : D → Si is a continuous function, and

all sets Ai are subsets of general topological space Si. If we denote this operation of taking unions and
intersections by Ψ (i.e., A = Ψ(φ−11 (A1), . . . , φ

−1
m (Am))), then

Ψ(φ−11 (A◦1), . . . , φ
−1
m (A◦m)) ⊆ A◦ ⊆ A ⊆ A− ⊆ Ψ(φ−11 (A−1 ), . . . , φ

−1
m (A−m)).

Therefore, (3.5) holds if T̂−1j (Ψ(φ−11 (A−1 ), . . . , φ
−1
m (A−m))) \ T̂−1j (Ψ(φ−11 (A◦1), . . . , φ

−1
m (A◦m))) has Lebesgue

measure zero. A similar principle holds for the limit measures Cj,k, defined in the next section where we
deal with two-sided Lévy processes. For more concrete examples, see Section 5.1 and Section 5.2.
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3.2 Two-sided Large Deviations

Consider a two-sided Lévy measure ν for which ν[x,∞) is regularly varying with index −α and ν(−∞,−x]
is regularly varying with index −β. Let

X̄n(s) ,
1

n
Xn(s)− sa− (µ+

1 ν
+
1 − µ−1 ν

−
1 )s,

where

µ+
1 ,

1

ν+1

∫

[1,∞)

xν(dx), ν+1 , ν[1,∞), µ−1 ,
−1

ν−1

∫

(−∞,−1]

xν(dx), ν−1 , ν(−∞,−1].

The limit measures Cj,k in the main results of this section are concentrated on Dj,k, which we define as
the subspace of D, consisting of step functions vanishing at the origin with exactly j upward jumps and k
downward jumps.

Let νjα be as defined in Section 3.1. Similarly, let νkβ denote the restriction (to R
k↓
+ ) of the k-fold

product measure of νβ, where νβ(x,∞) , x−β . Let C0,0(·) , δ0(·) be the Dirac measure concentrated

on the zero function. For each (j, k) ∈ Z2
+ \ {(0, 0)}, define a measure Cj,k(·) , E

[

νjα × νkβ{(x, y) ∈

(0,∞)j × (0,∞)k :
∑j

i=1 xi1[Ui,1] −
∑k

i=1 yi1[Vi,1] ∈ ·}
]

concentrated on Dj,k, where Ui’s and Vi’s are i.i.d.

uniform on [0, 1]. Recall thatD<j,k =
⋃

(l,m)∈I<j,k
Dl,m and I<j,k = {(l,m) ∈ Z2

+\(j, k) : (α−1)l+(β−1)m ≤

(α− 1)j + (β − 1)k}. Let I(j, k) , (α− 1)j + (β − 1)k, and consider

(J (A),K(A)) ∈ argmin
(j,k)∈Z2

+

Dj,k∩A 6=∅

I(j, k). (3.6)

The next theorem applies to the case where the minimizing argument in (3.6) is a single pair (which is
implied by its assumption).

Theorem 3.3. Suppose that A is a measurable set. If the argument minimum in (3.6) is non-empty and
A is bounded away from D<J (A),K(A), then

CJ (A),K(A)(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)

≤ lim sup
n→∞

P(X̄n ∈ A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)(A

−).

(3.7)

Proof. Note that, in general,

min
(j,k)∈Z2

+

Dj,k∩A
− 6=∅

I(j, k) ≤ I(J (A),K(A)) ≤ min
(j,k)∈Z2

+

Dj,k∩A
◦ 6=∅

I(j, k),

and the left inequality cannot be strict since A is bounded away from D<J (A),K(A). On the other hand,
if the right inequality is strict, then DJ (A),K(A) ∩ A◦ = ∅, which in turn implies CJ (A),K(A)(A

◦) = 0,
since CJ (A),K(A) is supported on DJ (A),K(A). Therefore, the lower bound is trivial if the right inequal-
ity is strict. In view of these observations, we can assume w.l.o.g. that (J (A),K(A)) is also in both
argmin (j,k)∈Z2

+

Dj,k∩A
◦ 6=∅

I(j, k) and argmin (j,k)∈Z2
+

Dj,k∩A
− 6=∅

I(j, k). Now, (3.7) is an immediate consequence of Theo-

rem 3.5, given below.
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Remark 5. If the argument minimum in (3.6) is empty and A is bounded away from D<l,m for some
(l,m) ∈ Z2

+ \ {(0, 0)}, then Theorem 3.5 applies with (j, k) = (l,m) to give (nν[n,∞))−l(nν(−∞,−n])−m

P(X̄n ∈ A) → 0 as n→ ∞.

In case one is interested in a set for which the argmin of I in (3.6) is not unique, a natural approach
is to partition A into smaller sets and analyze each element separately. In the next theorem, we show
that this strategy can be successfully employed with a minimal requirement on A. However, due to the
presence of two different slowly varying functions nαν[n,∞) and nβν(−∞,−n], the limit behavior may not
be dominated by a single Dl,m.

To deal with this case, let I=j,k , {(l,m) : (α− 1)l+ (β − 1)m = (α− 1)j + (β − 1)k}, I≪j,k , {(l,m) :

(α − 1)l + (β − 1)m < (α − 1)j + (β − 1)k}, D=j,k ,
⋃

(l,m)∈I=j,k
Dl,m, and D≪j,k ,

⋃

(l,m)∈I≪j,k
Dl,m.

Denote the slowly varying functions nαν[n,∞) and nβν(−∞,−n] by L+(n) and L−(n), respectively.

Theorem 3.4. Suppose that A is a measurable set. If the argument minimum in (3.6) is non-empty and
A is bounded away from D≪J (A),K(A), then for any given ǫ > 0, there exists N ∈ N such that

∑

(l,m)

(

Cl,m(A◦ ∩ Dl,m)− ǫ
)

Ll
+(n)L

m
− (n)

n(α−1)J (A)+(β−1)K(A)
≤ P(X̄n ∈ A) ≤

∑

(l,m)

(

Cl,m(A− ∩ Dl,m) + ǫ
)

Ll
+(n)L

m
− (n)

n(α−1)J (A)+(β−1)K(A)

for all n ≥ N , where the summations are over the pairs (l,m) ∈ I=J (A),K(A).

Proof. Let (l,m) ∈ I=J (A),K(A). We first claim that A being bounded away from D≪J (A),K(A) implies that
for any (j, k) ∈ I=J (A),K(A) \ {(l,m)}, there exists δ > 0 such that A ∩ (Dl,m)δ is bounded away from Dj,k.
We will justify this claim at the end of the proof of this theorem. From that claim, one can choose δ so that
A∩ (Dl,m)δ is bounded away from the entire D<l,m. To derive the lower bound, we first apply Theorem 3.3
to A◦ ∩ (Dl,m)−δ and obtain

Cl,m(A◦ ∩ (Dl,m)−δ) ≤ lim inf
n→∞

P(X̄n ∈ A◦ ∩ (Dl,m)−δ)

(nν[n,∞))l(nν(−∞,−n])m
≤ lim inf

n→∞

P(X̄n ∈ A ∩ Dl,m)

(nν[n,∞))l(nν(−∞,−n])m
.

Taking δ → 0, we obtain

Cl,m(A◦ ∩Dl,m) ≤ lim inf
n→∞

P(X̄n ∈ A ∩ Dl,m)

(nν[n,∞))l(nν(−∞,−n])m
.

That is, for any given ǫ > 0, there exists an Nl,m ∈ N such that

(

Cl,m(A◦ ∩Dl,m)− ǫ
)

Ll
+(n)L

m
− (n)

n(α−1)l+(β−1)m
≤ P(X̄n ∈ A ∩ Dl,m), (3.8)

for all n ≥ Nl,m. Meanwhile, an obvious bound holds for A \
⋃

(l,m)∈I=J (A),K(A)
Dl,m; i.e.,

0 ≤ P
(

X̄n ∈ A \
⋃

(l,m)∈I=J (A),K(A)
Dl,m

)

. (3.9)

Since (α−1)l+(β−1)m = (α−1)J (A)+(β−1)K(A) for (l,m) ∈ I=J (A),K(A), summing (3.8) over (l,m) ∈
I=J (A),K(A) together with (3.9), we arrive at the lower bound of the theorem, with N = max(l,m)∈I=J (A),K(A)

Nl,m. Turning to the upper bound, we apply Theorem 3.3 to A− ∩ (Dl,m)δ to get

lim sup
n→∞

P(X̄n ∈ A− ∩ (Dl,m)δ)

(nν[n,∞))l(nν(−∞,−n])m
≤ Cl,m(A− ∩ (Dl,m)δ).
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That is, for any given ǫ > 0, there exists N ′l,m ∈ N such that

P(X̄n ∈ A ∩ (Dl,m)δ) ≤

(

Cl,m(A− ∩ (Dl,m)δ) + ǫ/2
)

Ll
+(n)L

m
− (n)

n(α−1)J (A)+(β−1)K(A)
, (3.10)

for all n ≥ N ′l,m. On the other hand, since A− \
⋃

(l,m)∈I=J (A),K(A)
(Dl,m)δ is closed and bounded away from

D<J (A),K(A),

lim sup
n→∞

P
(

X̄n ∈ A \
⋃

(l,m)(Dl,m)δ
)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)

(

A− \
⋃

(l,m)(Dl,m)δ
)

,

where the union is over the pairs (l,m) ∈ I=J (A),K(A). Therefore, there exists N ′ such that

P
(

X̄n ∈ A \
⋃

(l,m)(Dl,m)δ
)

≤

(

CJ (A),K(A)

(

A− \
⋃

(l,m)(Dl,m)δ
)

+ ǫ/2
)

L
J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)

=
(ǫ/2)L

J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)
,

(3.11)

sinceA− \
⋃

(l,m)(Dl,m)δ is disjoint from the support ofCJ (A),K(A). Summing (3.10) over (l,m) ∈ I=J (A),K(A)

and (3.11),

P(X̄n ∈ A) ≤

∑

(l,m)

(

Cl,m

(

A− ∩ (Dl,m)δ
)

+ ǫ
)

Ll
+(n)L

m
− (n)

n(α−1)J (A)+(β−1)K(A)
, (3.12)

for n ≥ N , where N = N ′ ∨max(l,m)∈I=J (A),K(A)
N ′l,m. Taking δ → 0, we obtain the upper bound of the

theorem.
Now, we are left with justifying the claim made at the beginning of this proof. To prove the claim,

suppose that (l,m) and (j, k) are two distinct pairs that belong to I=J (A),K(A) and assume w.l.o.g. that j < l.
(If j > l, it should be the case that k < m, and hence one can proceed similarly by switching the roles of
upward jumps and downward jumps in the following argument.) Suppose also that d

(

A,D≪J (A),K(A)

)

> γ
for some γ > 0, and ξ ∈ A ∩ (Dl,m)δ, where γ = cδ for some large c > 0 (we will see how large c has to
be later). Then, there exists a ζ ∈ Dl,m such that d(ζ, ξ) ≤ 2δ. Note that d

(

ζ,D≪J (A),K(A)

)

≥ (c − 2)δ;

in particular, d
(

ζ,Dj,m) ≥ (c − 2)δ. If we write ζ ,
∑l

i=1 xi1[ui,1] −
∑m

i=1 yi1[vi,1], this implies that

xj+1 ≥ (c−2)δ
l−j . Otherwise, (c−2)δ >

∑l
i=j+1 xi = ‖ζ−ζ′‖ ≥ d(ζ, ζ′), where ζ′ , ζ−

∑l
i=j+1 xi1[ui,1] ∈ Dj,m.

Therefore, d(ζ,Dj,k) ≥
(c−2)δ
2(l−j) , which in turn implies d(ξ,Dj,k) ≥

(c−2)δ
2(l−j) − 2δ. In Conclusion, by picking a

large enough c so that (c−2)δ
2(l−j) − 2δ > 0, one can make A ∩ (Dl,m)δ bounded away from Dj,k.

Remark 6. As in the one-sided case, we can relax the condition that A is bounded away from D≪J (A),K(A).
However, we cannot resort to Lemma 2.2 to attain the most useful form of such an extension, since the
asymptotic equivalence established in the proof of Theorem 3.5 is w.r.t. D<j,k, rather than an empty set
(apart from the problem of dealing with the slowly varying functions). Instead, we can take a more direct
approach, taking advantage of the specific properties of the Dl,m’s. Note first that (D≪j,k)δ ⊆ (D=j,k)δ,
and hence A− \

⋃

(l,m)∈I=J (A),K(A)
(Dl,m)δ is bounded away from D≪J (A),K(A), for all A. In addition, if

A ∩ (Dl,m)δ is bounded away from D≪J (A),K(A), then there exists δ′ > 0 such that A ∩ (Dl,m)δ′ is bounded
away from D<l,m by the claim stated at the beginning of the proof. With these two observations, one can
check that the proof of Theorem 3.4 is still valid (without assuming that the entire A is bounded away from
D≪J (A),K(A)), as long as there exists a δ > 0 such that A∩ (Dl,m)δ is bounded away from D≪J (A),K(A) for

each (l,m) ∈ I=J (A),K(A). Now, since the existence of δ > 0 such that d
(

A ∩ (Dl,m)δ,D≪J (A),K(A)

)

> 0 is

implied by the existence of δ > 0 such that d
(

Aδ∩Dl,m,D≪J (A),K(A)

)

> 0, we can conclude that Theorem 3.4
applies if there exists δ > 0 such that Aδ ∩ D=J (A),K(A) is bounded away from D≪J (A),K(A).
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Remark 7. If the argument minimum in (3.6) is empty and A is bounded away from D≪j,k for some
(j, k) ∈ Z2

+ \ {(0, 0)}, then a similar argument as in the proof of Theorem 3.4 leads to

n(α−1)j+(β−1)k

max(l,m)∈I=j,k
Ll
+(n)L

m
− (n)

P(X̄n ∈ A) → 0.

Theorem 3.5. For each (j, k) ∈ Z2
+,

(nν[n,∞))−j(nν(−∞,−n])−kP(X̄n ∈ ·) → Cj,k(·) (3.13)

in M(D \ D<j,k) as n→ ∞.

Proof Sketch. In view of Lemma 6.3, our task is to prove that X̄n is asymptotically equivalent to Ĵ6j
n −K̂6k

n

w.r.t. (nν[n,∞))j(nν(−∞,−n])k and D<j,k, where Ĵ6j
n and K̂6k

n are, roughly speaking, the processes
obtained by keeping the j and k largest jumps of Jn/n and Kn/n, respectively (their precise definitions
are given right above Proposition 6.4 in Section 6). Once we have this equivalence, the conclusion of the
theorem is immediate from Lemma 6.3. The argument for asymptotic equivalence is essentially identical to
that of Theorem 3.2, except for Proposition 6.4, which corresponds to Proposition 6.2 for one-sided Lévy
measures. Therefore, we provide Proposition 6.4 in Section 6.2, and omit the rest of the proof.

4 Implications

This section explores the implications of the large-deviations results in Section 3, and is organized as
follows. Section 4.1 proves a result similar to Theorem 3.3, now focusing on random walks with heavy-
tailed increments. Section 4.2 develops a weak large deviation priciple (LDP) of the form (1.3) for the
scaled Lévy processes. Finally, Section 4.3 shows that the weak LDP proved in Section 4.2 is the best one
can hope for in the presence of regularly varying tails, by showing that a full LDP of the form (1.3) does
not exist.

4.1 Random Walks

Let Sk, k ≥ 0, be a random walk, set S̄n(t) = S[nt]/n, t ≥ 0, and define Sn = {Sn(t), t ∈ [0, 1]}. Let

N(t), t ≥ 0, be an independent unit rate Poisson process. Define the Lévy process X(t) , SN(t), t ≥ 0, and

set X̄n(t) , X(nt)/n, t ≥ 0. The goal is to prove an analogue of Theorem 3.3 for the scaled random walk
S̄n. Let J (·), K(·), and Cj,k(·) be defined as in Section 3.2.

Theorem 4.1. Suppose that P(S1 ≥ x) is regularly varying with index −α and P(S1 ≤ −x) is regularly
varying with index −β. Let A be a measurable set bounded away from D<J (A),K(A). Then

CJ (A),K(A)(A
◦) ≤ lim inf

n→∞

P(S̄n ∈ A)

(nP (S1 ≥ n)))J (A)(nP (S1 ≤ −n))K(A)

≤ lim sup
n→∞

P(S̄n ∈ A)

(nP (S1 ≥ n))J (A)(nP (S1 ≤ −n))K(A)
≤ CJ (A),K(A)(A

−).

(4.1)

Proof. The idea is to combine our notion of asymptotic equivalence with Theorem 3.3. First, we need
to derive the asymptotic behavior of the Lévy measure of the constructed Lévy process. From Example
A3.17 in Embrechts et al. (1997), we obtain P (X(1) ≥ x) ∼ P (S1 ≥ x). Moreover, Embrechts et al. (1979)
implies that ν(x,∞) ∼ P(X(1) ≥ x). Similarly, it follows that ν(−∞,−x) ∼ P (S1 ≤ −x).
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Second, note that the proof of Theorem 3.3 now carries over without modification if (3.13) holds for S̄n

also. In view of Lemma 2.1, the proof will be completed if we prove the asymptotic equivalence between X̄n

and S̄n (w.r.t. a geometrically decaying sequence and the empty set). To prove the asymptotic equivalence,
we first argue that the Skorokhod distance between S̄n and X̄n is bounded by supt∈[0,1] |N(tn)/n− t|. To
see this, define the homeomorphism λn(t) as the linear interpolation of the jump points of N(nt)/n, and
observe that X̄n(t) = S̄n(λn(t)). Thus, the distance between S̄n and X̄n is bounded by supt∈[0,1] |λn(t)− t|
which, in itself, is bounded by supt∈[0,1] |N(tn)/n− t|. From Lemma A.1,

P( sup
t∈[0,1]

|N(tn)/n− t|) > δ) ≤ 3 sup
t∈[0,1]

P(|N(tn)/n− t|) > δ/3),

where P(|N(tn)/n − t|) > δ/3) vanishes at a geometric rate w.r.t. n uniform in t ∈ [0, 1], from which the
asymptotic equivalence follows.

4.2 Large Deviation Principle

In this section, we show that X̄n satisfies a weak large deviation principle with speed logn, and a rate
function which is piece-wise linear in the number of discontinuities. More specifically, define

I(ξ) ,

{

(α− 1)D+(ξ) + (β − 1)D−(ξ), if ξ is a step function with ξ(0) = 0,
∞, otherwise.

. (4.2)

Theorem 4.2. The scaled process X̄n satisfies the weak large deviation principle with rate function I and
speed logn, i.e.,

− inf
x∈G

I(x) ≤ lim inf
n→∞

logP(X̄n ∈ G)

logn
(4.3)

for every open set G, and

lim sup
n→∞

logP(X̄n ∈ K)

logn
≤ − inf

x∈K
I(x) (4.4)

for every compact set K.

The proof of Theorem 4.2 is provided in Section 6. It is based on Theorem 3.3, and a reduction of the
case of general A to open neighborhoods; reminiscent of arguments made in the proof of Cramérs theorem
Dembo and Zeitouni (2009).

4.3 Nonexistence of Strong Large Deviation Principle

We conclude the current section by showing that the weak LDP presented in the previous section is the
best one can hope for in our setting, in the sense that for any Lévy process X with a regularly varying Lévy
measure, X̄n cannot satisfy a strong LDP; i.e., (4.4) in Theorem 4.2 cannot be extended to all closed sets.

Consider a mapping π : D → R2
+ that maps paths in D to their largest jump sizes, i.e.,

π(ξ) ,
(

sup
t∈(0,1]

(

ξ(t)− ξ(t−)
)

, sup
t∈(0,1]

(

ξ(t−)− ξ(t)
)

)

.

Note that π is continuous, since each coordinate is continuous: for example, if the first coordinate (the largest
upward jump sizes) of π(ξ) and π(ζ) differ by ǫ then d(ξ, ζ) ≥ ǫ/2, which implies that the first coordinate is
continuous. Now, to derive a contradiction, suppose that X̄n satisfies a strong LDP. In particular, suppose
(4.4) in Theorem 4.2 is true for all closed sets rather than just compact sets. Since π is continuous w.r.t.
the J1 metric, π(X̄n) has to satisfy a strong LDP with rate function I ′(y) = inf{I(ξ) : ξ ∈ D, y = π(x)}
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by the contraction principle, in case I ′ is a rate function. (Since I is not a good rate function, I ′ is not
automatically guaranteed to be a rate function per se; see, for example, Theorem 4.2.1 and the subsequent
remarks of Dembo and Zeitouni (2009).) From the exact form of I ′, given by

I ′(y1, y2) = (α− 1)I(y1 > 0) + (β − 1)I(y2 > 0),

one can check that I ′ indeed happens to be a rate function. For the sake of simplicity, suppose that
α = β = 2, and ν[x,∞) = ν(−∞,−x] = x−2. Let Ĵ61

n , 1
nQ
←
n (Γ1)1[U1,1] and K̂

61
n , 1

nR
←
n (∆1)1[V1,1] where

Q←n (y) , inf{s > 0 : nν[s,∞) < y} = (n/y)
1/2

and R←n (y) , inf{s > 0 : nν(−∞,−s] < y} = (n/y)
1/2

.
The random variables Γ1 and ∆1 are standard exponential, and U1, V1 uniform [0, 1] (see also Section 6 for
similar and more general notational conventions). Note that Ȳn , (Ĵ61

n , K̂61
n ) is exponentially equivalent

to π(X̄n) if we couple π(X̄n) and (Ĵ61
n , K̂61

n ), using the representation of X̄n as in (6.4): for any δ > 0,
P
(

|Ȳn−π(X̄n)| > δ
)

≤ P
(

Ȳn 6= π(X̄n)
)

= P
(

Q←n (Γ1) ≤ 1 or R←n (∆1) ≤ 1
)

, which decays at an exponential
rate. Hence,

logP
(

|Ȳn − π(X̄n)| > δ
)

logn
→ −∞,

as n → ∞, where | · | is the Euclidean distance. As a result, Ȳn should satisfy the same (strong) LDP as
π(X̄n). Now, consider the set A ,

⋃∞
k=2[log k,∞) × [k−1/2,∞). Then, since [log k,∞) × [k−1/2,∞) ⊆ A

for k ≥ 2,

P(Ȳn ∈ A) ≥ P
(

(Ĵ61
n , K̂61

n ) ∈ [logn,∞)× [n−1/2,∞)
)

= P
(

Q←n (Γ1) > n logn,R←n (∆1) > n1/2
)

= P

(

(

n

Γ1

)1/2

> n logn,

(

n

∆1

)1/2

> n1/2

)

= P

(

Γ1 <
1

n(logn)2

)

P(∆1 < 1)

= (1− e
− 1

n(log n)2 )(1 − e−1).

Thus,

lim sup
n→∞

P(Ȳn ∈ A) ≥ lim sup
n→∞

log(1− e
− 1

n(log n)2 )(1 − e−1)

logn

≥ lim sup
n→∞

log 1
n(logn)2 (1−

1
2n(log n)2 )(1 − e−1)

logn
= −1.

(4.5)

On the other hand, since A ⊆ (0,∞)× (0,∞),

− inf
(y1,y2)∈A

I ′(y1, y2) = −2. (4.6)

Noting that A is a closed (but not compact) set, we arrive at a contradiction to the large deviation upper
bound for Ȳn. This, in turn, proves that X̄n cannot satisfy a full LDP.

5 Applications

In this section, we illustrate the use of our main results, established in Section 3, in several problem contexts
that arise in control, insurance, and finance. In all examples, we assume that X̄n (t) = X (nt) /n, where
X (·) is a centered Lévy process satisfying (1.1).
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5.1 Crossing High Levels with Moderate Jumps

We are interested in level crossing probabilities of Lévy processes where the jumps are conditioned to
be moderate. More precisely, we are interested in probabilities of the form P

(

supt∈[0,1][X̄n(t) − ct] ≥

a; supt∈[0,1][X̄n(t)− X̄n(t−)] ≤ b
)

. We make a technical assumption that a is not a multiple of b and focus

on the case where the Lévy process X̄n is spectrally positive.
The setting of this example is relevant in, for example, insurance, where huge claims may be reinsured

and therefore do not play a role in the ruin of an insurance company. Asmussen and Pihlsg̊ard (2005) focus
on obtaining various estimates of infinite-time ruin probabilities using analytic methods. Here, we provide
complementary sharp asymptotics for the finite-time ruin probability, using probabilistic techniques.

Set A , {ξ ∈ D : supt∈[0,1][ξ(t)− ct] ≥ a; supt∈[0,1][ξ(t)− ξ(t−)] ≤ b} and define j , ⌈a/b⌉. Intuitively, j
should be the key parameter, as it takes at least j jumps of size b to cross level a. Our goal is to make this
intuition rigorous by applying Theorem 3.1 and by showing that the upper and lower bounds are tight.

In view of Remark 3, we first check that Aδ ∩ Dj is bounded away from the closed set D6j−1 for some
δ > 0. To see this, it suffices to show that

1) supt∈[0,1][ξ(t)− ξ(t−)] ≤ b and supt∈[0,1][ζ(t) − ζ(t−)] > b′ imply d(ξ, ζ) > b′−b
3 ; and

2) supt∈[0,1][ξ(t)− ct] < a′ and supt∈[0,1][ζ(t) − ct] ≥ a imply d(ξ, ζ) ≥ a−a′

c+1 .

It is straightforward to check 1). To see 2), note that for any ǫ > 0, one can find t∗ such that ζ(t∗)− ct∗ ≥
a− ǫ. Of course, ξ(λ(t∗))− cλ(t∗) < a′ for any homeomorphism λ(·). Subtracting the latter inequality from
the former inequality, we obtain

ζ(t∗)− ξ(λ(t∗)) ≥ a− a′ − ǫ+ c(t∗ − λ(t∗)). (5.1)

One can choose λ so that d(ξ, ζ) + ǫ ≥ ‖λ− e‖ ≥ λ(t∗)− t∗ and d(ζ, ξ) + ǫ ≥ ‖ζ − ξ ◦ λ‖ ≥ ζ(t∗)− ξ(λ(t∗)),
which together with (5.1) yields

d(ξ, ζ) > a− a′ − (c+ 1)ǫ− cd(ξ, ζ).

This leads to d(ξ, ζ) ≥ a−a′

c+1 by taking ǫ→ 0. With 1) and 2) in hand, it follows that φ1(ξ) , supt∈[0,1][ξ(t)−

ξ(t−)] and φ2(ξ) , supt∈[0,1][ξ(t) − ct] are continuous functionals and Aδ ⊆ A(δ), where A(δ) , {ξ ∈ D :
supt∈[0,1][ξ(t) − ct] ≥ a − (c + 1)δ; supt∈[0,1][ξ(t) − ξ(t−)] ≤ b + 3δ}. Since ξ ∈ A(δ) ∩ Dj implies that the
jump size of ξ is bounded from below by (b+ 3δ)j − (a− (c+ 1)δ), one can choose δ > 0 so that A(δ) ∩Dj

is bounded away from D6j−1. This implies that Aδ ∩ Dj is also bounded away from D6j−1 for sufficiently
small δ > 0. Hence, Theorem 3.1 applies with J (A) = j.

Next, to identify the limit, recall the discussion at the end of Section 3.1. Note that A = φ−11 [a,∞) ∩
φ−12 (−∞, b] and

T̂−1j (φ−11 [a,∞) ∩ φ−12 (−∞, b]) =
{

(x, u) ∈ Ŝj :
∑j

i=1 xi ≥ a+ cmaxi=1,...,j ui, maxi=1,...,j xi ≤ b
}

,

T̂−1j (φ−11 (a,∞) ∩ φ−12 (−∞, b)) =
{

(x, u) ∈ Ŝj :
∑j

i=1 xi > a+ cmaxi=1,...,j ui, maxi=1,...,j xi < b
}

.
(5.2)

We see that T̂−1j (φ−11 [a,∞) ∩ φ−12 (−∞, b]) \ T̂−1j (φ−11 (a,∞) ∩ φ−12 (−∞, b)) has Lebesgue measure 0, and
hence, A is Cj-continuous. Thus, (3.5) holds with

Cj(A) = E

[

νjα{(0,∞)j :

j
∑

i=1

xi1[Ui,1] ∈ A}

]

=

∫

(x,u)∈T̂−1
j (A)

j
∏

i=1

[αx−α−1i dxidui] > 0.
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Therefore, we conclude that

P

(

sup
t∈[0,1]

[X̄n(t)− ct] ≥ a; sup
t∈[0,1]

[X̄n(t)− X̄n(t−)] ≤ b

)

∼ Cj

(

A
)

(nν[n,∞))j . (5.3)

In particular, the probability of interest is regularly varying with index −(α− 1)⌈a/b⌉.

5.2 A Two-sided Barrier Crossing Problem

We consider a Lévy-driven Ornstein-Uhlenbeck process of the form

dȲn (t) = −κdȲn (t) + dX̄n (t) , Ȳn (0) = 0.

We apply our results to provide sharp large-deviations estimates for

b (n) = P
(

inf{Ȳn (t) : 0 ≤ t ≤ 1} ≤ −a−, Ȳn (1) ≥ a+
)

as n → ∞, where a−, a+ > 0. This probability can be interpreted as the price of a barrier digital option
(see Cont and Tankov, 2004, Section 11.3). In order to apply our results it is useful to represent Ȳn as an
explicit function of X̄n. In particular, we have that

Ȳn (t) = exp (−κt)

(

Ȳn (0) +

∫ t

0

exp (κs) dX̄n (s)

)

(5.4)

= X̄n (t)− κ exp (−κt)

∫ t

0

exp (κs) X̄n (s) ds. (5.5)

Hence, if φ : D ([0, 1],R) → D ([0, 1],R) is defined via

φ (ξ) (t) = ξ (t)− κ exp (−κt)

∫ t

0

exp (κs) ξ (s) ds,

then Ȳn = φ
(

X̄n

)

. Moreover, if we let

A =

{

ξ ∈ D : inf
0≤t≤1

φ (ξ) (t) ≤ −a−, φ (ξ) (1) ≥ a+

}

,

then we obtain
b (n) = P

(

X̄n ∈ A
)

.

In order to easily verify topological properties of A, let us define m,π1 : D ([0, 1],R) → R by m (ξ) =
inf0≤t≤1 ξ (t) , and π1 (ξ) = ξ (1) . Note that π1 is continuous (see Billingsley, 2013, Theorem 12.5), that m
is continuous as well, and so is φ. Thus, m ◦ φ and π1 ◦ φ are continuous. We can therefore write

A = (m ◦ φ)−1 (−∞,−a−] ∩ (π1 ◦ φ)
−1

[a+,∞),

concluding that A is a closed set. We now apply Theorem 3.3. To show that Di,0 is bounded away

from (m ◦ φ)−1 (−∞,−a−], select θ such that d (θ,Di,0) < r with r < a−/ (1 + κ exp (κ)). There exists a

ξ ∈ Di,0 such that d (θ, ξ) < r and ξ satisfies ξ (t) =
∑i

j=1 xjI[uj ,1] (t) , with i ≥ 1. There also exists a
homeomorphism λ : [0, 1] → [0, 1] such that

sup
t∈[0,1]

|λ (t)− t| ∨ |(ξ ◦ λ) (t)− θ (t)| < r. (5.6)
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Now, define ψ = θ − (ξ ◦ λ). Due to the linearity of φ, and representations (5.4) and (5.5), we obtain that

φ (θ) (t) = φ ((ξ ◦ λ)) (t) + φ (ψ) (t)

= exp (−κt)
i
∑

j=1

exp
(

κλ−1 (uj)
)

xjI[λ−1(uj),1] (t) + ψ (t)− κ exp (−κt)

∫ t

0

exp (κs)ψ (s) ds.

Since xj ≥ 0, applying the triangle inequality and inequality (5.6) we conclude (by our choice of r), that

inf
0≤t≤1

φ (θ) (t) ≥ −r (1 + κ exp (κ)) > −a−.

A similar argument allows us to conclude that D0,i is bounded away from (π1 ◦ φ)
−1

[a+,∞). Hence, in
addition to being closed, A is bounded away from D0,i∪Di,0 for any i ≥ 1. Moreover, let ξ ∈ A∩D1,1, with

ξ (t) = xI[u,1](t)− yI[v,1](t), (5.7)

where x > 0 and y > 0. Using (5.4), we obtain that ξ ∈ A ∩ D1,1, is equivalent to

y ≥ a−, u > v, and x ≥ a+ exp (κ (1− u)) + y exp (−κ (u− v)) .

Now, we claim that

A◦ =

{

ξ ∈ D : inf
0≤t≤1

φ (ξ) (t) < −a−, φ (ξ) (1) > a+

}

(5.8)

= (m ◦ φ)−1 (−∞,−a−) ∩ (π1 ◦ φ)
−1

(a+,∞).

It is clear that A◦ contains the open set in the right hand side. We now argue that such a set is actually
maximal, so that equality holds. Suppose that φ (ξ) (1) = a+, while min0≤t≤1 φ (ξ) (t) < −a−. We then
consider ψ = −δI{1} (t) with δ > 0, and note that d (ξ, ξ + ψ) ≤ δ, and

φ (ξ + ψ) (t) = φ (ξ) (t) I[0,1) (t) + (a+ − δ) I{1} (t) ,

so that ξ + ψ /∈ A. Similarly, we can see that the other inequality (involving a−) must also be strict, hence
concluding that (5.8) holds.

We deduce that, if ξ ∈ A◦ ∩ D1,1 with ξ satisfying (5.7), then

y > a−, u > v, x > a+ exp (κ (1− u)) + y exp (−κ (u− v)) .

Thus, we can see that A is C1,1 (·)-continuous, either directly or by invoking our discussion in Section 3.1
regarding continuity of sets. Therefore, applying Theorem 3.3, we conclude that

b (n) ∼ nν[n,∞)nν(−∞,−n]C1,1 (A)

as n→ ∞, where

C1,1 (A) =

∫ 1

0

∫ ∞

a−

∫ 1

v

∫ ∞

a+ exp(κ(1−u))+y exp(−κ(u−v))

να(dx) du νβ(dy)dv.

In particular, the probability of interest is regularly varying with index 2− α− β.
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5.3 Identifying the optimal number of jumps for sets of the form A = {ξ : l ≤
ξ ≤ u}

The sets that appeared in the examples in Section 5.1 and Section 5.2 lend themselves to a direct character-
ization of the optimal numbers of jumps (J (A),K(A)). However, in more complicated problems, deciding
what kind of paths the most probable limit behaviors consist of may not be as obvious. In this section,
we show that for sets of a certain form, we can identify an optimal path. Consider continuous real-valued
functions l and u, which satisfy l(t) < u(t) for every t ∈ [0, 1], and suppose that l(0) < 0 < u(0). Define
A = {ξ : l(t) ≤ ξ(t) ≤ u(t)}. We assume that both α, β <∞, which is the most interesting case.

The goal of this section is to construct an algorithm which yields an expression for J (A) and K(A). In
fact, we can completely identify a function h that solves the optimization problem defining (J (A),K(A)).
This function will be a step function with both positive and negative steps. We first construct such a
function, and then verify its optimality. The first step is to identify the times at which this function jumps.
Define the sets

At , {x : l(t) ≤ x ≤ u(t)}, A∗s,t , ∩s≤r≤tAr,

and the times (tn, n ≥ 1) by

tn+1 , 1 ∧ inf{t > tn : Aτn,t = ∅} for n ≥ 2, t1 , 1 ∧ inf{t > 0 : 0 /∈ At}.

Let n∗ = inf{n ≥ 1 : tn = 1}. Assume that n∗ > 1, since the zero function is the obvious optimal path in
case n∗ = 1. Due to the construction of the times tn, n ≥ 1, we have the following properties:

• Either l(t1) = 0 or u(t1) = 0.

• For every n = 1, . . . , n∗ − 2, supt∈[tn,tn+1] l(t) = inft∈[tn,tn+1] u(t).

• Hfin , [supt∈[tn∗−1,tn∗ ]
l(t), inft∈[tn∗−1,tn∗ ] u(t)] is nonempty.

Set hn , supt∈[tn,tn+1] l(t) for n = 1, . . . , n∗− 1, and set hn∗−1 , hfin for any hfin ∈ Hfin. Define now h(t)
as 0 on t ∈ [0, t1), h(t) = hn on t ∈ [tn, tn+1) for n = 1, . . . , n∗ − 2, and h(t) = hn∗−1 on t ∈ [tn∗−1, 1]. We
claim now that (J (A),K(A)) = (J ({h}),K({h})). In fact, we can prove that if g ∈ A is a step function,
D+(g) ≥ D+(h) and D−(g) ≥ D−(h), which implies the optimality of h. The proof is based on the following
observation. At each tn+1, either

1) for any ǫ > 0 one can find t ∈ [tn+1, tn+1 + ǫ] such that u(t) < hn, or

2) for any ǫ > 0 one can find t ∈ [tn+1, tn+1 + ǫ] such that l(t) > hn.

Otherwise, there exists ǫ > 0 such that hn ∈ Atn,tn+1+ǫ, contradicting the definition of tn, which requires
Atn,tn+1+ǫ = ∅. From this observation, we can prove that on each interval (tn, tn+1], any feasible path must
jump at least once in the same direction as that of the jump of h. To see this, first suppose that 1) is the
case at tn+1, and g ∈ A is a step function. Note that due to its continuity, l(·) should have achieved its
supremum at tsup ∈ [tn, tn+1], i.e., l(tsup) = hn, and hence, g(tsup) ≥ hn. On the other hand, due to the
right continuity of g and 1), g has to be strictly less than hn at tn+1, i.e., g(tn+1) < hn. Therefore, g must
have a downward jump on (tsup, tn+1] ⊆ (tn, tn+1]. Note that the direction of the jump of h in the interval
(tn, tn+1] (more specifically at tn+1) also has to be downward. Since g is an arbitrary feasible path, this
means that whenever h jumps downward on (tn, tn+1), any feasible path in A should also jump downward.
Hence, any feasible path must have either equal or a greater number of downward jumps as h’s on [0, 1].
Case 2) leads to a similar conclusion about the number of upward jumps of feasible paths. The number of
upward jumps of h is optimal, proving that h is indeed the optimal path.
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5.4 Multiple Optima

This section illustrates how to handle a case where we require Theorem 3.4, and consider an illustrative
example where a rare event can be caused by two different configurations of big jumps. Suppose that the
regularly varying indices −α and −β for positive and negative parts of the Lévy measure ν of X are equal,
and consider the set A , {ξ ∈ D : |ξ(t)| ≥ t − 1/2}. Then, argmin (j,k)∈Z2

+

Dj,k∩A 6=∅

I(j, k) = {(1, 0), (0, 1)}, and

D≪1,0 = D≪0,1 = D0,0. Since |ξ(1)| ≥ 1/2 for any ξ ∈ A, d(A,D≪0,0) = 1/2 > 0. Theorem 3.4 therefore
applies, and for each ǫ > 0, there exists N such that

P(X̄n ∈ A) ≥

(

Cl,m(A◦ ∩ D1,0)− ǫ
)

L+(n) +
(

Cl,m(A◦ ∩D0,1)− ǫ
)

L−(n)

nα−1
,

P(X̄n ∈ A) ≤

(

Cl,m(A− ∩ D1,0) + ǫ
)

L+(n) +
(

Cl,m(A− ∩ D0,1) + ǫ
)

L−(n)

nα−1
,

for all n ≥ N . Note that A is closed, since if there is ξ ∈ D and s ∈ [0, 1] such that |ξ(s)| < s − 1/2,

then B(ξ, s−1/2−ξ(s)2 ) ⊆ Ac. Therefore, A− ∩ D1,0 = A ∩ D1,0 = {ξ = x1[u,1] : x ≥ 1/2, 0 < u ≤ 1/2}, and
hence, C1,0(A

− ∩ D1,0) = P(U1 ∈ (0, 1/2])να[1/2,∞) = (1/2)1−α. Noting that A◦ ∩ D1,0 ⊇ (A ∩ D1,0)
◦ =

{ξ = x1[u,1] : x > 1/2, 0 < u < 1/2}, we deduce C1,0(A
◦ ∩ D1,0) ≥ P(U1 ∈ (0, 1/2))να(1/2,∞) = (1/2)1−α.

Therefore, C1,0(A
◦ ∩ D1,0) = C1,0(A

− ∩ D1,0) = (1/2)1−α. Similarly, we can check that C0,1(A
◦ ∩ D0,1) =

C0,1(A
− ∩ D0,1) = (1/2)1−β (= (1/2)1−α). Therefore, for n ≥ N ,

((1/2)1−α − ǫ)(L+(n) + L−(n))n
1−α ≤ P(X̄n ∈ A) ≤ ((1/2)1−α + ǫ)(L+(n) + L−(n))n

1−α.

This is equivalent to
(

1

2

)1−α

≤ lim inf
n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α
≤ lim sup

n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α
≤

(

1

2

)1−α

.

Hence,

lim
n→∞

P(X̄n ∈ A)

(L+(n) + L−(n))n1−α
=

(

1

2

)1−α

.

6 Proofs

Section 6.1, Section 6.2, and Section 6.3 provide proofs of the results in Section 2, Section 3, and Section 4,
respectively.

6.1 Proofs of Section 2

Recall that Fδ = {x ∈ S : d(x, F ) ≤ δ} and G−δ = ((Gc)δ)
c.

Proof of Lemma 2.1. Let G be an open set bounded away from C so that G ⊆ (S \ C)−γ for some γ > 0.
For a given δ > 0, due to the assumed asymptotic equivalence, P(Xn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ) = o(ǫn).
Therefore,

lim inf
n→∞

ǫ−1n P(Yn ∈ G) ≥ lim inf
n→∞

ǫ−1n P
(

Xn ∈ G−δ, d(Xn, Yn) < δ
)

= lim inf
n→∞

ǫ−1n

{

P
(

Xn ∈ G−δ
)

−P
(

Xn ∈ G−δ, d(Xn, Yn) ≥ δ
)}

≥ lim inf
n→∞

ǫ−1n

{

P
(

Xn ∈ G−δ
)

−P
(

Xn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ
)}

= lim inf
n→∞

ǫ−1n P
(

Xn ∈ G−δ
)

≥ µ(G−δ).

(6.1)
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Since G is an open set, G =
⋃

δ>0G
−δ. Due to the continuity of measures, limδ→0 µ(G

−δ) = µ(G), and
hence, we arrive at the lower bound

lim inf
n→∞

ǫ−1n P(Xn ∈ G) ≥ µ(G)

by taking δ → 0. Now, turning to the upper bound, consider a closed set F bounded away from C so that
F ⊆ (S\C)−γ for some γ > 0. Given a δ > 0, by the equivalence assumption, P(Yn ∈ (S\C)−γ , d(Xn, Yn) ≥
δ) = o(ǫn). Therefore,

lim sup
n→∞

ǫ−1n P(Yn ∈ F ) = lim sup
n→∞

ǫ−1n {P (Yn ∈ F, d(Xn, Yn) < δ) +P (Yn ∈ F, d(Xn, Yn) ≥ δ)}

≤ lim sup
n→∞

ǫ−1n

{

P (Xn ∈ Fδ) +P
(

Yn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ
)}

= lim sup
n→∞

ǫ−1n P (Xn ∈ Fδ)

≤ µ(Fδ)

(6.2)

as far as δ is small enough so that Fδ is bounded away from C. Note that {Fδ} is a decreasing sequence
of sets, F =

⋂

δ>0 Fδ (since F is closed), and µ ∈ M(S \ C) (and hence µ is a finite measure on S \ Cr for
some r > 0 such that Fδ ⊆ S \ Cr for some δ > 0). Due to the continuity (from above) of finite measures,
limδ→0 µ(Fδ) = µ(F ). Therefore, we arrive at the upper bound

lim sup
n→∞

ǫ−1n P(Xn ∈ F ) ≤ µ(F )

by taking δ → 0.

Proof of Lemma 2.2. The argument is identical to the proof of Lemma 2.1, except for the last two inequal-
ities of (6.1) and (6.2). The penultimate equalities of the two displays can be simply ignored since the
assumed asymptotic equivalence is w.r.t. an empty set. To see the last inequality of (6.1), note that one
can pick r > 0 such that G−δ ∩ S0 ∩Cr = 0, implying that G−δ ∩Cc

r is an open set bounded away from C.
Hence

lim inf
n→∞

P(Xn ∈ G−δ) = lim inf
n→∞

P(Xn ∈ G−δ ∩ S0) = lim inf
n→∞

P(Xn ∈ G−δ ∩ S0 ∩ C
c

r)

= lim inf
n→∞

P(Xn ∈ G−δ ∩ C
c

r) ≥ µ(G−δ ∩ C
c

r) = µ(G−δ ∩ C
c

r ∩ S0)

= µ(G−δ ∩ S0) = µ(G−δ),

which validates the last inequality in (6.1). To validate the last inequality of (6.2), since Fδ ∩ S0 is also
bounded away from C,

lim sup
n→∞

P(Xn ∈ Fδ) = lim sup
n→∞

P(Xn ∈ Fδ ∩ S0) ≤ lim sup
n→∞

P(Xn ∈ Fδ ∩ S0 )

≤ µ
(

Fδ ∩ S0

)

= µ
(

Fδ ∩ S0 ∩ S0

)

≤ µ
(

F̄δ ∩ S0

)

= µ(F̄δ) = µ(Fδ).

Proof of Lemma 2.3. The proof is an easy adaptation of the proof of Result 2 based on the fact that
∂h−1(A′) ⊆ S \ Cr for some r > 0 due to the assumption, and the fact that ∂h−1(A′) ⊆ h−1(∂A′) ∩Dh ∩
∂S0.

Proof of Lemma 2.4. The first two claims are straightforward analogies of Result 3. As a consequence of
those claims, we can apply Lemma 2.3 with S0 = Sj,k and h = Tj,k to conclude the proof of the last
claim.
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Proof of Lemma 2.5. From (i) and the inclusion-exclusion formula, µn(
⋃m

i=1 Ai) → µ(
⋃m

i=1 Ai) as n → ∞
for any finite m if Ai ∈ Ap is bounded away from C for i = 1, . . . ,m. If G is open and bounded away from C,
there is a sequence of sets Ai, i ≥ 1 in Ap such that G =

⋃∞
i=1Ai; note that since G is bounded away from

C, Ai’s are also bounded away from C. For any ǫ > 0, one can find Mǫ such that µ(
⋃Mǫ

i=1Ai) ≥ µ(G) − ǫ,
and hence,

lim inf
n→∞

µn(G) ≥ lim inf
n→∞

µn(

Mǫ
⋃

i=1

Ai) = µ(

Mǫ
⋃

i=1

Ai) ≥ µ(G)− ǫ.

Taking ǫ → 0, we arrive at the lower bound (2.2). Turning to the upper bound, given a closed set F , we
pick A ∈ Ap bounded away from C such that F ⊆ A◦. Then,

µ(A) − lim sup
n→∞

µn(F ) = lim
n→∞

µn(A) + lim inf
n→∞

(−µn(F ))

= lim inf
n→∞

(µn(A)− µn(F )) = lim inf
n→∞

µn(A \ F )

≥ lim inf
n→∞

µn(A
◦ \ F ) ≥ µ(A◦ \ F )

= µ(A) − µ(F ).

Note that µ(A) <∞ since A is bounded away from C, which together with the above inequality establishes
the upper bound (2.2).

6.2 Proofs of Section 3

This section provides the proofs for the limit theorems presented in Section 3 — Theorem 3.2 for one-sided
Lévy measures and Theorem 3.5 for two-sided Lévy measures. The theorems are based on

1. The asymptotic equivalence between the target object X̄n and the process obtained by keeping its j
largest upward jumps and k largest downward jumps, which will be denoted as J6j

n −K6k
n (K6k

n = 0
in the one-sided case): Proposition 6.1 and Proposition 6.2 prove such asymptotic equivalences in
the one-sided case. For two-sided Lévy measures, the argument for the asymptotic equivalence that
corresponds to Proposition 6.1 is identical to the one-sided case, and hence omitted. Proposition 6.4
is the two-sided version of Proposition 6.2. Two technical lemmas (Lemma 6.1 and Lemma 6.2) play
key roles in Proposition 6.2 and Proposition 6.4.

2. M-convergence of J6j
n − K6k

n : Lemma 6.3 identifies the convergence of jump size sequences, and
Proposition 6.3 deduces the convergence of J6j

n −K6k
n from the convergence of the jump size sequences

via the mapping theorem established in Section 2.

Lemma 6.4 collects properties of Dj and Dj,k useful throughout this section.

Recall that Xn(t) , X(nt) is a scaled process of X , where X is a Lévy process with a Lévy measure ν.
Also recall that Xn has Itô representation

Xn(s) = nsa+B(ns) +

∫

|x|≤1

x[N([0, ns]× dx)− nsν(dx)] +

∫

|x|>1

xN([0, ns]× dx), (6.3)
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where N is the Poisson random measure with mean measure Leb×ν on [0, n]× (0,∞) and Leb denotes the
Lebesgue measure. It is easy to see that

Jn(s) ,

Ñn
∑

l=1

Q←n (Γl)1[Ul,1](s)
D
=

∫

x>1

xN([0, ns]× dx),

Kn(s) ,

M̃n
∑

l=1

R←n (∆l)1[Vl,1](s)
D
=

∫

x<−1

−xN([0, ns]× dx),

where Γl = E1 +E2 + ...+El and ∆l = F1 +F2 + ...+Fl; Ei’s and Fi’s are i.i.d. and standard exponential
random variables; Ul’s and Vl’s are i.i.d. and uniform variables in [0, 1]; Ñn = Nn

(

[0, 1] × [1,∞)
)

and

M̃n = Mn

(

[0, 1] × [1,∞)
)

; Nn =
∑∞

l=1 δ(Ul,Q←n (Γl)) and Mn =
∑∞

l=1 δ(Vl,Q←n (Γl)), where δ(x,y) is the Dirac

measure concentrated on (x, y); Qn(x) , nν[x,∞), Q←n (y) , inf{s > 0 : nν[s,∞) < y} and Rn(x) ,

nν(−∞,−x], R←n (y) , inf{s > 0 : nν(−∞,−s] < y}. Note that Ñn is the number of Γl’s such that
Γl ≤ nν+1 , where ν+1 , ν[1,∞), and hence, Ñn ∼ Poisson(nν+1 ). For the same reason, M̃n ∼ Poisson(nν−1 ),
where ν−1 , ν(−∞,−1]. Throughout the rest of this section, we use the following representation for the
centered and scaled process X̄n , 1

nXn:

X̄n(s)
D
=

1

n
Jn(s)−

1

n
Kn(s) +

1

n
B(ns) +

1

n

∫

|x|≤1

x[N([0, ns]× dx)− nsν(dx)] − (µ+
1 ν

+
1 − µ−1 ν

−
1 )s. (6.4)

Proof of Theorem 3.2. Since ν is concentrated on (0,∞), we can set Kn ≡ 0 and µ−1 ν
−
1 = 0 in (6.4). We

decompose X̄n into a centered compound Poisson process, a centered Lévy process with small jumps, and a
residual process that arises due to centering. After that, we will show that the compound Poisson process
determines the limit. More specifically, consider the following decomposition:

X̄n(s)
D
= Ȳn(s) + J̄n(s) + Z̄n(s),

Ȳn(s) ,
1

n
B(ns) +

1

n

∫

|x|≤1

x[N([0, ns]× dx)− nsν(dx)],

J̄n(s) ,
1

n

Ñn
∑

l=1

(Q←n (Γl)− µ+
1 )1[Ul,1](s),

Z̄n(s) ,
1

n

Ñn
∑

l=1

µ+
1 1[Ul,1](s)− µ+

1 ν
+
1 s,

(6.5)

where µ+
1 , 1

ν+
1

∫

[1,∞)
xν(dx). Let Ĵ6j

n , 1
n

∑j
l=1Q

←
n (Γl)1[Ul,1] be, roughly speaking, the process obtained

by just keeping the j largest (un-centered) jumps of J̄n. In view of Lemma 2.1 and Proposition 6.3, it
suffices to show that X̄n and Ĵ6j

n are asymptotically equivalent. Proposition 6.1 along with Proposition 6.2
prove the desired asymptotic equivalence, and hence, conclude the proof of the Theorem 3.2.

Proposition 6.1. Let X̄n and J̄n be as in the proof of Theorem 3.2. Then, X̄n and J̄n are asymptotically

equivalent w.r.t.
(

nν[n,∞)
)j

and an empty set (for any j ≥ 0).

Proof. In view of the decomposition (6.5), we are done if we show that P(‖Ȳn‖ > δ) = o
(

(nν[n,∞))−j
)
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and P(‖Z̄n‖ > δ) = o
(

(nν[n,∞))−j
)

. For the tail probability of ‖Ȳn‖,

P

[

sup
t∈[0,1]

|Ȳn(t)| > δ

]

≤ P

[

sup
t∈[0,n]

∣

∣B(t)
∣

∣ > nδ/2

]

+P

[

sup
t∈[0,n]

∣

∣

∣

∣

∣

∫

|x|≤1

x[N((0, t]× dx) − tν(dx)]

∣

∣

∣

∣

∣

> nδ/2

]

.

We have an explicit expression for the first term by the reflection principle, and in particular, it decays at a
geometric rate w.r.t. n. For the second term, let Y ′(t) ,

∫

|x|≤1 x[N((0, t]× dx)− tν(dx)]. Using Etemadi’s

bound for Lévy processes (see Lemma A.1), we obtain

P

[

sup
t∈[0,n]

∣

∣

∣

∣

∣

∫

|x|≤1

x[N([0, t]× dx)− tν(dx)]

∣

∣

∣

∣

∣

> nδ/2

]

≤ 3 sup
t∈[0,n]

P

[

|Y ′(t)| > nδ/6

]

≤ 3 sup
t∈[0,n]

{

P

[

|Y ′(⌊t⌋)| > nδ/12

]

+P

[

|Y ′(t)− Y ′(⌊t⌋)| > nδ/12

]}

≤ 3 sup
t∈[0,n]

P

[

|Y ′(⌊t⌋)| > nδ/12

]

+ 3 sup
t∈[0,n]

P

[

|Y ′(t)− Y ′(⌊t⌋)| > nδ/12

]

= 3 sup
1≤k≤n

P

[

|Y ′(k)| > nδ/12

]

+ 3 sup
t∈[0,1]

P

[

|Y ′(t)| > nδ/12

]

= 3 sup
1≤k≤n

P

[∣

∣

∣

∣

k
∑

i=1

{Y ′(i)− Y ′(i − 1)}

∣

∣

∣

∣

> nδ/12

]

+ 3 sup
t∈[0,1]

P

[

|Y ′(t)| > nδ/12

]

.

Since Y ′(i) − Y ′(i − 1) are i.i.d. with Y ′(i) − Y ′(i − 1)
D
= Y ′(1) =

∫

|x|≤1
x[N((0, 1] × dx) − ν(dx)] and

Y ′(1) has exponential moments, the first term decreases at a geometric rate w.r.t. n due to the Chernoff
bound; on the other hand, in the proof of Lemma 5.1 of Lindskog et al. (2014), the second term is proved

to be bounded by E|X̃(1)|m

nm(δ/6)m for any m. Therefore, by choosing m large enough, this term can be discarded.

For the tail probability of ‖Z̄n‖, note that Z̄n is a mean zero Lévy process with the same distribution as
µ+
1 (N(ns)/n− ν+1 s), where N is the Poisson process with rate ν+1 . Therefore, again from the continuous-

time version of Etemadi’s bound, we see that P(‖Z̄n‖ > δ) decays at a geometric rate w.r.t. n for any
δ > 0.

Proposition 6.2. For each j ≥ 0, let J̄n and Ĵ6j
n be defined as in the proof of Theorem 3.2. Then, J̄n and

Ĵ6j
n are asymptotically equivalent w.r.t.

(

nν[n,∞)
)j

and an empty set.

Proof. With the convention that the summation is 0 in case the superscript is strictly smaller than the
subscript, consider the following decomposition of J̄n:

Ĵ6j
n ,

1

n

j
∑

l=1

Q←n (Γl)1[Ul,1], J̌6j
n ,

1

n

j
∑

l=1

−µ+
1 1[Ul,1],

J̄>j
n ,

1

n

Ñn
∑

l=j+1

(Q←n (Γl)− µ+
1 )1[Ul,1], R̄n ,

1

n
I(Ñn < j)

j
∑

l=Ñn+1

(Q←n (Γl)− µ+
1 )1[Ul,1],
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so that
J̄n = Ĵ6j

n + J̌6j
n + J̄>j

n − R̄n.

Note that P(‖J̌6j
n ‖ ≥ δ) = 0 for sufficiently large n since ‖J̌6j

n ‖ = jµ1/n. On the other hand, P(‖R̄n‖ ≥ δ)
decays at a geometric rate since {‖R̄n‖ ≥ δ} ⊆ {Ñn < j} and P(Ñn < j) decays at a geometric rate. Since
P(‖J̄>j

n ‖ ≥ δ) ≤ P(‖J̄>j
n ‖ ≥ δ,Q←n (Γj) ≥ nγ) +P(‖J̄>j

n ‖ ≥ δ,Q←n (Γj) ≤ nγ), Lemma 6.1 and Lemma 6.2

given below imply P(‖J̄>j
n ‖ ≥ δ) = o

(

(nν[n,∞))j
)

by choosing γ small enough. Therefore, Ĵ6j
n and J̄n

are asymptotically equivalent w.r.t. (nν[n,∞))j and an empty set.

Define measures µ
(j)
α and µ

(j)
β on R

∞↓
+ by

µ(j)
α (dx1, dx2, · · · ) ,

j
∏

i=1

να(dxi)I[x1≥x2≥···≥xj>0]

∞
∏

i=j+1

δ0(dxi), να(x,∞) = x−α,

µ
(j)
β (dx1, dx2, · · · ) ,

j
∏

i=1

νβ(dxi)I[x1≥x2≥···≥xj>0]

∞
∏

i=j+1

δ0(dxi), νβ(x,∞) = x−β ,

where δ0 is the Dirac measure concentrated at 0.

Proposition 6.3. For each j ≥ 0,

(

nν[n,∞)
)−j

P(Ĵ6j
n ∈ ·) → Cj(·)

in M
(

D \ D6j−1

)

as n→ ∞, and for each (j, k) ∈ Z2
+,

(

nν[n,∞)
)−j(

nν(−∞,−n]
)−k

P(Ĵ6j
n − K̂6k

n ∈ ·) → Cj,k(·)

in M
(

D \ D<j,k

)

as n→ ∞.

Proof. Noting that (µ
(j)
α ×Leb)◦T−1j = Cj and P(Ĵ6j

n ∈ ·) = P
((

(Q←n (Γl)/n, l ≥ 1), (Ul, l ≥ 1)
)

∈ T−1j (·)
)

,

Lemma 6.3 and Corollary 2.1 prove the first claim. Likewise, since (µ
(j)
α × µ

(k)
β × Leb× Leb) ◦ T−1j,k = Cj,k

and P(Ĵ6j
n − K̂6k

n ∈ ·) = P
((

(Q←n (Γl)/n, l ≥ 1), (R←n (∆l)/n, l ≥ 1), (Ul, l ≥ 1), (Vl, l ≥ 1)
)

∈ T−1j,k (·)
)

,
Lemma 6.3 and Lemma 2.4 prove the second claim.

Lemma 6.1. For any fixed γ > 0, δ > 0,and j ≥ 0,

P
{

‖J̄>j
n ‖ ≥ δ,Q←n (Γj) ≥ nγ

}

= o
(

(nν[n,∞))j
)

. (6.6)

Proof. (Throughout the proof of this lemma, we use µ1 and ν1 in place of µ+
1 and ν+1 respectively.) We

start with the following decomposition of J̄>j
n : for any fixed λ ∈

(

0, δ
3ν1µ1

)

,

J̄>j
n =

1

n

Ñn
∑

l=j+1

(Q←n (Γl)− µ1)1[U1,1]

= J̃ [j+1,nν1(1+λ)]
n − J̃ [Ñn+1,nν1(1+λ)]

n I(Ñn < nν1(1 + λ)) + J̃ [nν1(1+λ)+1,Ñn]
n I(Ñn > nν1(1 + λ)),

where

J̃ [a,b]
n ,

1

n

⌊b⌋
∑

l=⌈a⌉

(Q←n (Γl)− µ1)1[Ul,1].
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Therefore,

P
{

‖J̄>j
n ‖ ≥ δ,Q←n (Γj) ≥ nγ

}

≤ P
(∥

∥

∥J̃ [j+1,nν1(1+λ)]
n

∥

∥

∥ ≥ δ/3, Q←n (Γj) ≥ nγ
)

+P
(∥

∥

∥J̃ [Ñn+1,nν1(1+λ)]
n

∥

∥

∥ ≥ δ/3
)

+P
(

Ñn > nν1(1 + λ)
)

= (i) + (ii) + (iii).

Noting that
∥

∥

∥J̃
[Ñn+1,nν1(1+λ)]
n

∥

∥

∥ ≤ (ν1(1+λ)− Ñn/n)µ1 — recall that Ñn is defined to be the number of l’s

such that Q←n (Γl) ≥ 1, and hence, 0 ≤ Q←n (Γl) < 1 for l > Ñn — we see that (ii) is bounded by

P((ν1(1 + λ)− Ñn/n)µ1 ≥ δ/3) = P

(

Ñn

nν1
≤ 1 + λ−

δ

3ν1µ1

)

,

which decays at a geometric rate w.r.t. n since Ñn is Poisson with rate nν1. For the same reason, (iii) decays
at a geometric rate w.r.t. n. We are done if we prove that (i) is o

(

(nν[n,∞))j
)

. Note that Q←n (Γj) ≥ nγ
implies Qn(nγ) ≥ Γj , and hence,

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj +Qn(nγ))− µ1

)

1[Ul,1] ≤

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl)− µ1

)

1[Ul,1]

≤

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj)− µ1

)

1[Ul,1].

Therefore, if we define

An , {Q←n (Γj) ≥ nγ} ,

B′n ,







inf
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj +Qn(nγ))− µ1

)

1[Ul,1](t) ≤ −nδ







,

B′′n ,







sup
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj)− µ1

)

1[Ul,1](t) ≥ nδ







,

then we have that

(i) ≤ P(An ∩ (B′n ∪B′′n)) ≤ P(An ∩B′n) +P(An ∩B′′n) = P(An)(P(B′n) +P(B′′n))

Due to Lemma 6.4 (c) and Proposition 6.3, P(An) = P(Ĵ6j
n ∈ (D \ D6j−1)

−γ/2) = O
(

(nν[n,∞))j
)

, and
hence, it suffices to show that

P







sup
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj)− µ1

)

1[Ul,1](t) ≤ nδ







→ 1, (6.7)

and

P







inf
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj +Qn(nγ))− µ1

)

1[Ul,1](t) ≥ −nδ







→ 1, (6.8)
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for any fixed γ > 0. Starting with (6.7)

P







sup
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj)− µ1

)

1[Ul,1](t) ≤ nδ







= P







sup
t∈[0,1]

(1+λ)nν1−j
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≤ nδ







≥ P







sup
t∈[0,1]

(1+λ)nν1−j
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≤ nδ, Ñn ≤ (1 + λ)nν1 − j







≥ P







sup
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≤ nδ, Ñn ≤ (1 + λ)nν1 − j







≥ P







sup
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≤ nδ)







−P
{

Ñn > (1 + λ)nν1 − j
}

.

The second inequality is due to the definition of Q←n and that µ1 ≥ 1 (and hence Q←n (Γl) − µ1 ≤ 0 on
l ≥ Ñn), while the last inequality comes from the generic inequality P(A∩B) ≥ P(A)−P(Bc). The second
probability converges to 0 since Ñ is Poisson with rate nν1. Moving on to the first probability in the last

expression, observe that
∑Ñn

l=1

(

Q←n (Γl) − µ1

)

1[Ul,1](·) has the same distribution as the compound Poisson

process
∑J(n·)

i=1 (Di−µ1), where J is a Poisson process with rate ν1 and Di’s are i.i.d. random variables with
the distribution ν conditioned (and normalized) on [1,∞), i.e., P{Di ≥ s} = 1 ∧ ν[s,∞)/ν[1,∞). Using
this, we obtain

P







sup
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≤ nδ







= P

{

sup
1≤m≤J(n)

m
∑

l=1

(Dl − µ1) ≤ nδ

}

(6.9)

≥ P

{

sup
1≤m≤2nν1

m
∑

l=1

(Dl − µ1) ≤ nδ, J(n) ≤ 2nν1

}

≥ P

{

sup
1≤m≤2nν1

m
∑

l=1

(Dl − µ1) ≤ nδ

}

−P
{

J(n) > 2nν1
}

The second probability vanishes at a geometric rate w.r.t. n because J(n) is Poisson with rate nν1. The first
term can be investigated by the generalized Kolmogorov inequality, cf. Shneer and Wachtel (2009) (given
as Result 4 in Appendix A):

P

(

max
1≤m≤2nν1

m
∑

l=1

(Dl − µ1) ≥ nδ/2

)

≤ C
2nν1V (nδ/2)

(nδ/2)2
,
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where V (x) = E[(Dl − µ1)
2;µ1 − x ≤ Dl ≤ µ1 + x] ≤ µ2

1 +E[D2
l ;Dl ≤ µ1 + x]. Note that

E[D2
l ;Dl ≤ µ1 + x] =

∫ 1

0

2sds+

∫ µ1+x

1

2s
ν[s,∞)

ν[1,∞)
ds

= 1 +
2

ν1
(µ1 + x)2−αL(µ1 + x),

for some slowly varying L. Hence,

P

(

max
1≤m≤2nν1

m
∑

l=1

(Dl − µ1) ≤ nδ

)

≥ 1−P

(

max
1≤m≤2nν1

m
∑

l=1

(Dl − µ1) ≥ nδ/2

)

→ 1,

as n→ ∞.
Now, turning to (6.8), let γn , Qn(nγ).

P







inf
t∈[0,1]

(1+λ)nν1
∑

l=j+1

(

Q←n (Γl − Γj +Qn(nγ))− µ1

)

1[Ul,1](t) ≥ −nδ







= P







inf
t∈[0,1]

(1+λ)nν1−j
∑

l=1

(

Q←n (Γl + γn)− µ1

)

1[Ul,1](t) ≥ −nδ







≥ P







inf
t∈[0,1]

(1+λ)nν1−j
∑

l=1

(

Q←n (Γl + γn)− µ1

)

1[Ul,1](t) ≥ −nδ,E0 ≥ γn







≥ P







inf
t∈[0,1]

(1+λ)nν1−j
∑

l=1

(

Q←n (Γl + E0)− µ1

)

1[Ul,1](t) ≥ −nδ,E0 ≥ γn







= P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=2

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ,Γ1 ≥ γn







≥ P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=2

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ







−P {Γ1 < γn}

= (A) − (B),

where E0 is a standard exponential random variable. (Recall that Γl , E1 + E2 + · · · + El, and hence

(Γl + E0, Ul)
D
= (Γl+1, Ul)

D
= (Γl+1, Ul+1).) Since (B) = P {Γ1 < γn} → 0 (recall that γn = nν[nγ,∞) and
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ν is regularly varying with index −α < −1), we focus on proving that the first term (A) converges to 1:

(A) = P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=2

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ







≥ P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=2

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ, Ñn ≤ (1 + λ)nν1 − j + 1







≥ P







inf
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3, inf
t∈[0,1]

−
(

Q←n (Γ1)− µ1

)

1[U1,1](t) ≥ −nδ/3,

inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=Ñn+1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3,
N
∑

l=Ñn+2

Ñn ≤ (1 + λ)nν1 − j + 1







≥ P







inf
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3,







+P {Q←n (Γ1)− µ1 ≤ nδ/3}

+P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=Ñn+1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3







+P
{

Ñn ≤ (1 + λ)nν1 − j + 1
}

− 3

= (AI) + (AII) + (AIII) + (AIV) − 3.

The third inequality comes from applying the generic inequality P(A∩B) ≥ P(A) +P(B)− 1 three times.
Since Ñn is Poisson with rate nν1,

(AIV) = P
{

Ñn ≤ (1 + λ)nν1 − j + 1
}

= P

{

Ñn

nν1
≤ 1 + λ−

j − 1

nν1

}

→ 1.

For the first term (AI),

(AI) = P







inf
t∈[0,1]

Ñn
∑

l=1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3







= P







sup
t∈[0,1]

Ñn
∑

l=1

(

µ1 −Q←n (Γl)
)

1[Ul,1](t) ≤ nδ/3







= P

{

sup
1≤m≤J(n)

m
∑

l=1

(µ1 −Dl) ≤ nδ/3

}

,

where Di is defined as before. Note that this is of exactly same form as (6.9) except for the sign of Dl, and
hence, we can proceed exactly the same way using the generalized Kolmogorov inequality to prove that this
quantity converges to 1 — recall that the formula only involves the square of the increments, and hence,
the change of the sign has no effect. For the second term (AII),

(AII) ≥ P
{

Γ1 > Qn(nδ/3 + µ1)
}

→ 1,

28



since Qn(nδ/3 + µ1) → 0. For the third term (AIII),

(AIII) = P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=Ñn+1

(

Q←n (Γl)− µ1

)

1[Ul,1](t) ≥ −nδ/3







≥ P







inf
t∈[0,1]

(1+λ)nν1−j+1
∑

l=Ñn+1

(1− µ1)1[Ul,1](t) ≥ −nδ/3







≥ P







(1+λ)nν1−j+1
∑

l=Ñn+1

(µ1 − 1) ≤ nδ/3







≥ P
{

(µ1 − 1)
(

(1 + λ)nν1 − j − Ñn + 1
)

≤ nδ/3
}

≥ P

{

1 + λ−
δ

3ν1(µ1 − 1)
≤
Ñn

nν1
+
j − 1

nν1

}

→ 1,

since λ < δ
3ν1(µ1−1)

. This concludes the proof of the lemma.

Lemma 6.2. For any j ≥ 0, δ > 0, and m <∞, there is γ0 > 0 such that

P
{∥

∥J̄>j
n

∥

∥ > δ,Q←n (Γj) ≤ nγ0
}

= o(n−m).

Proof. (Throughout the proof of this lemma, we use µ1 and ν1 in place of µ+
1 and ν+1 respectively, for the

sake of notational simplicity.) Note first that Q←n (Γj) = ∞ if j = 0 and hence the claim of the lemma is
trivial. Therefore, we assume j ≥ 1 throughout the rest of the proof. Since for any λ > 0

P
{∥

∥J̄>j
n

∥

∥ > δ,Q←n (Γj) ≤ nγ
}

≤ P







∥

∥

∥

∥

∥

∥

Ñn
∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥

∥

∥

∥

∥

∥

> nδ,Q←n (Γj) ≤ nγ,
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]







(6.10)

+P

{

Ñn

nν1
/∈

[

j

nν1
, 1 + λ

]

}

,

and P
{

Ñn

nν1
/∈
[

j
nν1

, 1 + λ
]}

decays at a geometric rate w.r.t. n, it suffices to show that (6.10) is o(n−m)

for small enough γ > 0. First, recall that by the definition of Q←n (·),

Q←n (x) ≥ s ⇐⇒ x ≤ Qn(s),

and
nν(Q←n (x),∞) ≤ x ≤ nν[Q←n (x),∞).

Let L be a random variable conditionally (on Ñn) independent of everything else and uniformly sampled
on {j + 1, j + 2, . . . , Ñn}. Recall that given Ñn and Γj , the distribution of {Γj+1,Γj+2, . . . ,ΓÑn

} is same

as that of the order statistics of Ñn − j uniform random variables on [Γj , nν[1,∞)]. Let Dl, l ≥ 1, be
i.i.d. random variables whose conditional distribution is the same as the conditional distribution of Q←n (ΓL)

given Ñn and Γj . Then the conditional distribution of
∑Ñn

l=j+1(Qn(Γl) − µ1)1[Ul,1] is the same as that of
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∑Ñn−j
l=1 (Dl − µ1)1[Ul,1]. Therefore, the conditional distribution of

∥

∥

∥

∑Ñn

l=j+1(Qn(Γl)− µ1)1[Ul,1]

∥

∥

∥

∞
is the

same as the corresponding conditional distribution of sup1≤m≤Ñn−j

∣

∣

∣

∑m
l=1(Dl − µ1)

∣

∣

∣. To make use of this

in the analysis what follows, we make a few observations on the conditional distribution of Q←n (ΓL) given
Γj and Ñn.

(a) The conditional distribution of Q←n (ΓL):
Let q , Q←n (Γj). Since ΓL is uniformly distributed on [Γj , Qn(1)] = [Γj , nν[1,∞)], the tail probability
is

P{Q←n (ΓL) ≥ s|Γj, Ñn} = P{ΓL ≤ Qn(s)|Γj , Ñn} = P{ΓL ≤ nν[s,∞)|Γj , Ñn}

= P

{

ΓL − Γj

nν[1,∞)− Γj
≤
nν[s,∞)− Γj

nν[1,∞)− Γj

∣

∣

∣

∣

Γj , Ñn

}

=
nν[s,∞)− Γj

nν[1,∞)− Γj

for s ∈ [1, q]; since this is non-increasing w.r.t. Γj and nν(q,∞) ≤ Γj ≤ nν[q,∞), we have that

ν[s, q)

ν[1, q)
≤ P{Q←n (ΓL) ≥ s|Γj , Ñn} ≤

ν[s, q]

ν[1, q]
.

(b) Difference in mean between conditional and unconditional distribution:
From (a), we obtain

µ̃n , E[Q←n (ΓL)|Γj , Ñn] ∈

[

1 +

∫ q

1

ν[s, q)

ν[1, q)
ds, 1 +

∫ q

1

ν[s, q]

ν[1, q]
ds

]

,

and hence,

|µ1 − µ̃n| ≤

∣

∣

∣

∣

∣

ν[1, q)
∫∞

1 ν[s,∞)ds− ν[1,∞)
∫ q

1 ν[s, q)ds

ν[1,∞)ν[1, q)

∣

∣

∣

∣

∣

∨

∣

∣

∣

∣

∣

ν[1, q]
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q

1
ν[s, q]ds

ν[1,∞)ν[1, q]

∣

∣

∣

∣

∣

.

Since

ν[1, q)
∫∞

1
ν[s,∞)ds− ν[1,∞)

∫ q

1
ν[s, q)ds

ν[1,∞)ν[1, q)

=
ν[q,∞)

ν[1, q)
(q − 1) +

∫∞

q
ν[s,∞)ds

ν[1,∞)
−
ν[q,∞)

∫ q

1 ν[s,∞)ds

ν[1,∞)ν[1, q)
,

and

ν[1, q)
∫∞

1 ν[s,∞)ds− ν[1,∞)
∫ q

1 ν[s, q)ds

ν[1,∞)ν[1, q)
−
ν[1, q]

∫∞

1 ν[s,∞)ds− ν[1,∞)
∫ q

1 ν[s, q]ds

ν[1,∞)ν[1, q]

=
ν{q}

(

(q − 1)ν[1,∞) +
∫∞

q
ν[s,∞)ds+

∫ q

1
ν[s,∞)ds

)

ν[1,∞)(ν[1, q) + ν{q})
,

we see that |µ1 − µ̃n| is bounded by a regularly varying function with index 1 − α (w.r.t. q) from
Karamata’s theorem.
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(c) Variance of Q←n (ΓL): Turning to the variance, we observe that, if α ≤ 2,

E[Q←n (ΓL)
2|Γj , Ñn] ≤

∫ 1

0

2sds+ 2

∫ q

1

s
ν[s, q]

ν[1, q]
ds ≤ 1 +

2

ν[1, q]

∫ q

1

sν[s,∞)ds = 1 + q2−αL(q) (6.11)

for some slowly varying function L(·). If α > 2, the variance is bounded w.r.t. q.

Now, with (b) and (c) in hand, we can proceed with an explicit bound since all the randomness is contained
in q. Namely, we infer

P

(

∥

∥

∥

∥

∥

∥

Ñn
∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥

∥

∥

∥

∥

∥

∞

> nδ,Q←n (Γj) ≤ nγ,
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]

)

= P

(

∥

∥

∥

∥

∥

∥

Ñn
∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥

∥

∥

∥

∥

∥

∞

> nδ,Γj ≥ Qn(nγ),
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]

)

= E



P

(

∥

∥

∥

∥

∥

∥

Ñn
∑

l=j+1

(Q←n (Γl)− µ1)1[Ul,1]

∥

∥

∥

∥

∥

∥

∞

> nδ

∣

∣

∣

∣

∣

∣

Γj, Ñn

)

; Γj ≥ Qn(nγ),
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]





= E

[

P

(

max
1≤m≤Ñn−j

∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

> nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

; Γj ≥ Qn(nγ),
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]

]

.

By Etemadi’s bound (Result 5 in Appendix),

P

(

max
1≤m≤Ñn−j

∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

≥ nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

≤ 3 max
1≤m≤Ñn

P

(∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

≥ nδ

∣

∣

∣

∣

∣

Γj, Ñn

)

≤ 3 max
1≤m≤Ñn

{

P

(

m
∑

l=1

(Dl − µ1) ≥ nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

+P

(

m
∑

l=1

(µ1 −Dl) ≥ nδ

∣

∣

∣

∣

∣

Γj , Ñn

)}

(6.12)

and as |Dl − µ̃n| is bounded by q, we can apply Prokhorov’s bound (Result 6 in Appendix) to get

P

(

m
∑

l=1

(µ1 −Dl) ≥ nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

= P

(

m
∑

l=1

(µ̃n −Dl) ≥ nδ −m(µ1 − µ̃n)

∣

∣

∣

∣

∣

Γj, Ñn

)

≤ P

(

m
∑

l=1

(µ̃n −Dl) ≥ nδ − nν1(1 + λ)(µ1 − µ̃n)

∣

∣

∣

∣

∣

Γj , Ñn

)

≤

(

qn(δ − ν1(1 + λ)(µ1 − µ̃n))

mvar (Q←n (ΓL))

)−
n(δ−ν1(1+λ)(µ1−µ̃n))

2q

≤

(

nν1(1 + λ)var (Q←n (ΓL))

qn(δ − ν1(1 + λ)(µ1 − µ̃n))

)

n(δ−ν1(1+λ)(µ1−µ̃n))

2q
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=















(

ν1(1+λ)(1+q2−αL1(q))
q(δ−ν1(1+λ)q1−αL2(q))

)

n(δ−ν1(1+λ)q1−αL2(q))
2q

if α ≤ 2,

(

ν1(1+λ)C
q(δ−ν1(1+λ)q1−αL2(q))

)

n(δ−ν1(1+λ)q1−αL2(q))

2q

otherwise,

for some C > 0 if m ≤ (1 + λ)nν1. Therefore, there exist constants M and c such that q ≥ M (i.e.,
Γj ≤ Qn(M)) implies

P

(

m
∑

l=1

(µ1 −Dl) ≥ nδ

∣

∣

∣

∣

∣

Γj

)

≤ c(q1−α∧2)
nδ
8q ,

and since we are conditioning on q = Q←n (Γj) ≤ nγ,

c(q1−α∧2)
nδ
8q ≤ c(q1−α∧2)

δ
8γ .

Hence,

P

(

m
∑

l=1

(µ1 −Dl) ≥ nδ

∣

∣

∣

∣

∣

Γj

)

≤ c
(

Q←n (Γj)
1−α∧2

)
δ
8γ .

With the same argument, we also get

P

(

m
∑

l=1

(Dl − µ1) ≥ nδ

∣

∣

∣

∣

∣

Γj

)

≤ c
(

Q←n (Γj)
1−α∧2

)
δ
8γ .

Combining (6.12) with the two previous estimates, we obtain

P

(

max
1≤m≤Ñn−j

∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

≥ nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

≤ 6c
(

Q←n (Γj)
1−α∧2

)
δ
8γ ,

on Γj ≥ Qn(nγ), Ñn − j ≤ nν1(1 + λ), and Γj ≤ Qn(M). Now,

E

[

P

(

max
1≤m≤Ñn−j

∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

> nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

; Γj ≥ Qn(nγ) &
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]

]

≤ E

[

P

(

max
1≤m≤Ñn−j

∣

∣

∣

∣

∣

m
∑

l=1

(Dl − µ1)

∣

∣

∣

∣

∣

> nδ

∣

∣

∣

∣

∣

Γj , Ñn

)

; Γj ≥ Qn(nγ);
Ñn

nν1
∈

[

j

nν1
, 1 + λ

]

; Γj ≤ Qn(M)

]

+P(Γj > Qn(M))

≤ E
[

6c
(

Q←n (Γj)
1−α∧2

)
δ
8γ

]

+P(Γj > Qn(M))

≤ E
[

6c
(

Q←n (Γj)
1−α∧2

)
δ
8γ ;Q←n (Γj) ≥ nβ

]

+P
(

Q←n (Γj) < nβ
)

+P
(

Γj > Qn(M)
)

≤ 6c
(

nβ(1−α∧2)
)

δ
8γ

+P
(

Γj > Qn(n
β)
)

+P
(

Γj > Qn(M)
)

≤ 6c
(

nβ(1−α∧2)
)

δ
8γ

+P
(

Γj > (n1−αβL(n))
)

+P
(

Γj > Qn(M)
)

,

for any β > 0. If one chooses β so that 1−αβ > 0 (for example, β = 1
2α ), the second and third terms vanish

at a geometric rate w.r.t. n. On the other hand, we can pick γ small enough compared to δ, so that the
first term is decreasing at an arbitrarily fast polynomial rate. This concludes the proof of the lemma.
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Recall that we denote the Lebesgue measure on [0, 1]∞ with Leb and defined measures µ
(j)
α and µ

(j)
β on

R
∞↓
+ as

µ(j)
α (dx1, dx2, . . .) ,

j
∏

i=1

να(dxi)I[x1≥x2≥···≥xj>0]

∞
∏

i=j+1

δ0(dxi), να(x,∞) = x−α,

µ
(k)
β (dx1, dx2, . . .) ,

k
∏

i=1

νβ(dxi)I[x1≥x2≥···≥xk>0]

∞
∏

i=k+1

δ0(dxi), νβ(x,∞) = x−β ,

where δ0 is the Dirac measure concentrated at 0.

Lemma 6.3. For each j ≥ 0,

(

nν[n,∞))−jP[((Q←n (Γl)/n, l ≥ 1), (Ul, l ≥ 1)) ∈ ·] → (µ(j)
α × Leb)(·)

in M
(

(R∞↓+ × [0, 1]∞) \ (H6j−1 × [0, 1]∞)
)

as n→ ∞. Also, for each (j, k) ∈ Z2
+,

P
[(

(Q←n (Γl)/n, l ≥ 1), (R←n (∆l)/n, l ≥ 1), (Ul, l ≥ 1), (Vl, l ≥ 1)
)

∈ ·
]

(

nν[n,∞))j
(

nν(−∞,−n])k
→ (µ(j)

α × µ
(k)
β × Leb× Leb)(·)

in M
(

(R∞↓+ × R
∞↓
+ × [0, 1]∞ × [0, 1]∞) \ (H<j,k × [0, 1]∞ × [0, 1]∞)

)

as n→ ∞.

Proof. We first prove that

(

nν[n,∞))−jP[(Q←n (Γl)/n, l ≥ 1) ∈ ·] → µ(j)
α (·) (6.13)

in M(R∞↓+ \ H6j−1) as n → ∞. To show this, we check the cases j = 0, j = 1, and j = 2 for convergence-

determining class of sets Aj ,
{

{z ∈ R
∞↓
+ : x1 < z1, . . . , xl < zl} : l ≥ j, x1, . . . , xl > 0

}

, instead of

checking for all j’s. To see that Aj is a convergence-determining class for M(R∞↓+ \ H6j−1)-convergence,

note that A′j ,
{

{z ∈ R
∞↓
+ : x1 < z1 ≤ y1, . . . , xl < zl ≤ yl} : l ≥ j, x1, . . . , xl > 0

}

(where yi’s are allowed
to assume ∞) satisfies conditions (i), (ii), and (iii) of Lemma 2.5, and hence, is a convergence-determining
class. Now define Aj(i)’s recursively as Aj(i + 1) , {B \ A : A,B ∈ Aj(i), A ⊆ B}, Aj(0) = Aj . Since
we restrict the set-difference operation between nested sets, the limit associated with the sets in Aj(i+ 1)
is determined by the sets in Aj(i), and eventually, Aj . Noting that A′j ⊆

⋃∞
i=0 Aj(i), we see that Aj is

indeed a convergence-determining class.

Now starting from j = 0, since µ
(0)
α (dx1, dx2, . . .) =

∏∞
i=1 δ0(dxi), we see that P[(Q←n (Γl)/n, l ≥ 1) ∈

{z ∈ R
∞↓
+ : x < z1}] = P[Q←n (Γ1)/n > x] = P[Γ1 ≤ Qn(nx)] = (1 − e−Qn(nx)) → 0 = µ

(0)
α ({z ∈ R

∞↓
+ : x <

z1}) for x > 0, and P[(Q←n (Γl)/n, l ≥ 1) ∈ R
∞↓
+ ] = 1 → 1 = µ

(0)
α (R∞↓+ ) confirming that the limit for the

sets in A0 indeed coincide with the limit in (6.13). For j = 1,

(nν[n,∞))−1P[Q←n (Γ1)/n > x] = (nν[n,∞))−1P[Γ1 ≤ Qn(nx)] = (nν[n,∞))−1(1 − e−Qn(nx))

∼ (nν[n,∞))−1Qn(nx) =
nν[nx,∞)

nν[n,∞)
→ x−α = να(x,∞).
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On the other hand, we have

(nν[n,∞))−1P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y]

= (nν[n,∞))−1P[Γ1 ≤ Qn(nx),Γ2 ≤ Qn(ny)]

≤ (nν[n,∞))−1P[Γ2 ≤ Qn(nx) ∨Qn(ny)]

≤ (nν[n,∞))−1P[Γ2 ≤ Qn(nx ∧ ny)]

= (nν[n,∞))−1(1− e−Qn(nx∧ny) −Qn(nx ∧ ny)e−Qn(nx∧ny))

≤ (nν[n,∞))−1(Qn(nx ∧ ny)−Qn(nx ∧ ny)(e−Qn(nx∧ny)))

≤ (nν[n,∞))−1(Qn(nx ∧ ny))2

= (nν[n,∞))−1(nν[n(x ∧ y),∞))2 → 0.

For j = 2, first consider the case x > y > 0:

P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y]

= P[Γ1 ≤ Qn(nx),Γ2 ≤ Qn(ny)] = 1− e−Qn(nx) −Qn(nx)e
−Qn(ny)

∼ Qn(nx)−Qn(nx)
2/2 +O(Qn(nx)

3)−Qn(nx)
(

1−Qn(ny) +O(Qn(ny)
2)
)

= Qn(nx)Qn(ny)−Qn(nx)
2/2 +O(Qn(nx)

3) +Qn(nx)O(Qn(ny)
2).

Therefore,

(nν[n,∞))−2P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y]

∼ (nν[n,∞))−2(nν[nx,∞))(nν[ny,∞)) − (nν[n,∞))−2(nν[nx,∞))2/2

+O((nν[n,∞))−2(nν[nx,∞))3)− (nν[n,∞))−2(nν[nx,∞))O((nν[ny,∞))2)
)

→ x−αy−α − x−2α/2 = µ(2)(z ∈ R
∞↓ : z1 > x, z2 > y).

Similarly for y > x > 0,

(nν[n,∞))−2P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y] → y−2α/2 = µ(2)(z ∈ R
∞↓ : z1 > x, z2 > y).

For x > 0, y > 0, z > 0,

(nν[n,∞))−2P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y,Q←n (Γ3) > z]

≤ (nν[n,∞))−2P[Γ3 ≤ Qn(nx) ∨Qn(ny) ∨Qn(nz)]

= (nν[n,∞))−2P[Γ3 ≤ Qn(n(x ∧ y ∧ z))]

= (nν[n,∞))−2(1− e−Qn(n(x∧y∧z)) −Qn(n(x ∧ y ∧ z))e−Qn(n(x∧y∧z))

−Qn(n(x ∧ y ∧ z))2e−Qn(n(x∧y∧z))/2)

From the Taylor expansion of e−x, i.e., e−x = 1− x+ x2/2 +O(x3),

(nν[n,∞))−2P[Q←n (Γ1)/n > x,Q←n (Γ2)/n > y,Q←n (Γ3) > z]

= (nν[n,∞))−2O(Qn(n(x ∧ y ∧ z))3)

= (nν[n,∞))−2O((nν[n(x ∧ y ∧ z),∞))3) → 0.

By similar calculation but considering slightly more involved convergence determining class Aj,k ,
{

A1 ×

A2 : A1 ∈ Al, A2 ∈ Am, (l,m) /∈ I<j,k

}

, it is straightforward to check that

(

nν[n,∞))−j
(

nν(−∞,−n])−kP
[(

(Q←n (Γl)/n, l ≥ 1), (R←n (∆l)/n, l ≥ 1)
)

∈ ·
]

→ (µ(j)
α × µ

(k)
β )(·) (6.14)
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in M
(

R
∞↓
+ × R

∞↓
+ \ H<j,k

)

as n → ∞. The conclusions of the lemma are immediate from (6.13), (6.14),
and the independence of Γi’s, Ui’s, ∆i’s, and Vi’s.

Next, we prove the asymptotic equivalence for the two-sided Poisson jump process. Let

Ĵ6j
n ,

1

n

j
∑

l=1

Q←n (Γl)1[Ul,1], J̄n ,
1

n

Ñn
∑

l=1

(Q←n (Γl)− µ+
1 )1[Ul,1], µ+

1 ,
1

ν+1

∫ ∞

1

xν(dx).

K̂6k
n ,

1

n

k
∑

l=1

R←n (∆l)1[Vl,1], K̄n ,
1

n

M̃n
∑

l=1

(R←n (∆l)− µ−1 )1[Vl,1], µ−1 ,
−1

ν−1

∫ −1

−∞

xν(dx).

Roughly speaking, as in the case of one-sided Lévy measures, the compound Poisson process Jn − Kn

determines the limit behavior of X̄n while the rest of the Lévy process doesn’t contribute to the asymptotic
behavior. However, in contrast to the one-sided case, we also have to take out the set that includes the
step functions with more than j upward jumps or more than k downward jumps to establish appropriate
M-convergences.

Proposition 6.4. For each (j, k) ∈ Z2
+, J̄n − K̄n is asymptotically equivalent to Ĵ6n

n − K̂6n
n with respect

to
(

nν[n,∞)
)j(

nν(−∞,−n]
)k

and D<j,k.

Proof. We decompose J̄n − K̄n in a similar way as in Proposition 6.2. Here, however, the asymptotic
equivalence w.r.t. an empty set is impossible to achieve. Therefore, we work with the asymptotic equivalence
with respect to D<j,k. Let

J̌6j
n ,

1

n

j
∑

l=1

−µ+
1 1[Ul,1], J̄>j

n ,
1

n

Ñn
∑

l=j+1

(Q←n (Γl)− µ+
1 )1[Ul,1],

Ǩ6k
n ,

1

n

k
∑

l=1

−µ−1 1[Vl,1], K̄>k
n ,

1

n

M̃n
∑

l=k+1

(R←n (∆l)− µ−1 )1[Vl,1],

R̄+
n ,

1

n
I(Ñn < j)

j
∑

l=Ñn+1

(Q←n (Γl)− µ+
1 )1[Ul,1], R̄−n ,

1

n
I(M̃n < j)

j
∑

l=M̃n+1

(R←n (∆l)− µ−1 )1[Vl,1]

so that
J̄n − K̄n = Ĵ6j

n − K̂6k
n + J̌6j

n − Ǩ6k
n + J̄>j

n − K̄>k
n − R̄+

n + R̄−n .

Note that it is straightforward to see that P(‖J̌6j
n ‖ ≥ δ), P(‖Ǩ6k

n ‖ ≥ δ), P(‖R̄+
n ‖ ≥ δ), and P(‖R̄−n ‖ ≥ δ)

are all o
(

(nν[n,∞))j(nν(−∞,−n])k
)

. Therefore, J̄n−K̄n is asymptotically equivalent to Ĵ6j
n −K̂6k

n +J̄>j
n −

K̄>k
n w.r.t. (nν[n,∞))j(nν(−∞,−n])k) and an empty set. If we also show that Ĵ6j

n − K̂6k
n + J̄>j

n − K̄>k
n

is asymptotically equivalent to Ĵ6j
n − K̂6k

n w.r.t. (nν[n,∞))j(nν(−∞,−n])k and D<j,k, the conclusion of
the proposition follows. In view of this, it suffices to prove that for any given δ > 0, γ > 0, and ρ > 0,

(i) P
(

‖J̄>j
n − K̄>k

n ‖ ≥ δ, Ĵ6j
n − K̂6k

n ∈ (D \ D<j,k)
−γ
)

= o
(

(nν[n,∞))j(nν(−∞,−n])k
)

;

(ii) P
(

‖J̄>j
n − K̄>k

n ‖ ≥ δ, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ
)

= o
(

(nν[n,∞))j(nν(−∞,−n])k
)

.

Starting with (i), we decompose the event as follows:

P
(

‖J̄>j
n − K̄>k

n ‖ ≥ δ, Ĵ6j
n − K̂6k

n ∈ (D \ D<j,k)
−γ
)

≤ P

(

‖J̄>j
n ‖ ≥

δ

2
, Ĵ6j

n − K̂6k
n ∈ (D \ D<j,k)

−γ

)

+P

(

‖K̄>k
n ‖ ≥

δ

2
, Ĵ6j

n − K̂6k
n ∈ (D \D<j,k)

−γ

)

.
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Since the two events above can be dealt with in an identical way, we only work out the first probability.
Noting that Ĵ6j

n − K̂6k
n ∈ (D \ D<j,k)

−γ implies Q←n (Γj) ≥ nγ and R←n (∆k) ≥ nγ by Lemma 6.4 (d),

P

(

‖J̄>j
n ‖ ≥

δ

2
, Ĵ6j

n − K̂6k
n ∈ (D \ D<j,k)

−γ

)

≤ P

(

‖J̄>j
n ‖ ≥

δ

2
, Q←n (Γj) ≥ nγ,R←n (∆k) ≥ nγ

)

= P

(

‖J̄>j
n ‖ ≥

δ

2
, Q←n (Γj) ≥ nγ

)

P (R←n (∆k) ≥ nγ)

= o
(

(nν[n,∞))j
)

O
(

(nν(−∞,−n])k
)

= o
(

(nν[n,∞))j(nν(−∞,−n])k
)

,

since P(R←n (∆k) ≥ nγ) ≤ P(K̂6k
n ∈ (D\D6k−1)

−γ/2) = O
(

(nν(−∞,−n])k
)

(analogous to Proposition 6.3).
Turning to (ii), note that since we already have (i), it is enough to prove that for any given δ > 0 and ρ > 0,
one can find γ > 0 such that

P
(

‖J̄>j
n − K̄>k

n ‖ ≥ δ, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n /∈ (D \ D<j,k)

−γ
)

= o
(

(nν[n,∞))j(nν(−∞,−n])k
)

. (6.15)

To prove (6.15), our strategy is to divide the event Ĵ6j
n − K̂6k

n /∈ (D \ D<j,k)
−γ into, roughly speaking,

Ĵ6j
n − K̂6k

n ∈ (Dl,m)γ for each (l,m) ∈ I<j,k and conquer each of them separately with the tools we have
developed for the one-sided Poisson processes, namely Proposition 6.3, Lemma 6.1, and Lemma 6.2. Note
that our one-sided tools are most useful when we have a good control over the behavior of Ĵ6j

n near the
boundaries of Dj . As one can imagine, these constraints translate into the need for the control over the

behavior of Ĵ6j
n − K̂6k

n near boundaries of Dj,k. In view of this, we consider a slightly more involved
cover than {(Dl,m)γ : (l,m) ∈ I<j,k}. More specifically, we construct a cover {Wl,m : (l,m) ∈ I<j,k} of
((D \ D<j,k)

−γ)
c
as follows:

Wl,m , D̂l,m \ (D̂l,m−1 ∪ D̂l−1,m),

where

D̂l,m , (Dl,m)γl,m
, γl,m , γ̄(4k)−l(4j)−m, γ̄ , γ max

(l,m)∈I<j,k

(4k)l(4j)m.

In this way, we make sure that in the event Ĵ6j
n −K̂6k

n ∈ Wl,m, the lth upward jump and the mth downward
jump are bounded from below while the higher order jumps are bounded from above; see Lemma 6.4
(e). The rest of the proof critically hinges on these properties. Before proceeding, note that {Wl,m :

(l,m) ∈ I<j,k} indeed covers ((D \ D<j,k)
−γ)

c
because ((D \ D<j,k)

−γ)
c
= (D<j,k)γ ⊆

⋃

(l,m)∈I<j,k
D̂l,m ⊆

⋃

(l,m)∈I<j,k
Wl,m. To see the last inclusion, let ι : Z+ × Z+ → Z+ be a one-to-one mapping ι(l,m) ,

l + (l + m)(l + m + 1)/2, and M<j,k , {i : i = ι(l,m) for some l,m ∈ I<j,k}. Let D̂n , D̂ι−1(n) (i.e.,

D̂ι(l,m) , D̂l,m for each l,m) and define W′n for n ∈M<j,k as follows:

W
′
n , D̂n \

⋃

i∈[0,n)∩M<j,k

D̂i.
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Note that ι(l−1,m) < ι(l,m) and ι(l,m−1) < ι(l,m), and hence, (D̂l,m−1∪D̂l−1,m) ⊆
⋃

i∈[0,ι(l,m))∩M<j,k
D̂i.

Therefore, W′ι(l,m) ⊆ Wl,m, and consequently,

⋃

(l,m)∈I<j,k

D̂l,m =
⋃

n∈M<j,k

D̂n =
⋃

n∈M<j,k

W
′
n =

⋃

(l,m)∈I<j,k

W
′
ι(l,m) ⊆

⋃

(l,m)∈I<j,k

Wl,m.

Now we decompose the probability in (6.15) w.r.t. {Wl,m}(l,m)∈I<j,k
.

P
(

‖J̄>j
n − K̄>k

n ‖ ≥ δ, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n /∈ (D \ D<j,k)

−γ
)

≤
∑

(l,m)∈I<j,k

P
(

∥

∥J̄>j
n − K̄>k

n

∥

∥ ≥ δ, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n ∈ Wl,m

)

,
∑

(l,m)∈I<j,k

pl,m(n).

The proof of the proposition is complete if we show that pl,m(n) = o
(

(nν[n,∞)j(nν(−∞,−n])k
)

for each
(l,m) ∈ I<j,k. In view of Lemma 6.4 (e-v), pl,m(n) = 0 for l > j or m > k, and hence, we only have to
consider the following two cases:

a) the case l < j and m < k.

b) the case l = j or m = k;

For case (a), pl,m(n) decreases at an arbitrarily fast polynomial rate because

pl,m(n) ≤ P
(

∥

∥J̄>j
n − K̄>k

n

∥

∥ ≥ δ, Ĵ6j
n − K̂6k

n ∈ Wl,m

)

≤ P
(∥

∥J̄>j
n − K̄>k

n

∥

∥ > δ,Q←n (Γl+1) ≤ 2nγl,m, R
←
n (∆l+1) ≤ 2nγl,m

)

≤ P

(

∥

∥J̄>j
n

∥

∥ >
δ

2
, Q←n (Γm+1) ≤ 2nγl,m

)

+P

(

∥

∥K̄>k
n

∥

∥ >
δ

2
, R←n (∆m+1) ≤ 2nγl,m

)

,

where the second inequality is due to Proposition 6.4 (e-i) and (e-ii). Due to Lemma 6.2, the first term
decreases at an arbitrarily fast polynomial rate if we choose γ small enough compared to δ, and so does the
second term (note that it is of the same form as the first term). Therefore, the whole upper bound vanishes
at an arbitrarily fast polynomial rate. Turning to case (b), since the treatment for m = k is identical, we
assume l = j. Note first that l = j and (l,m) ∈ I<j,k implies that 0 ≤ m < k, and pl,m(n) is bounded by

pl,m(n)

≤ P
(

Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n ∈ Wj,m

)

.

≤ P
(

Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n ∈ Wj,m, ‖K̄

>k
n ‖ >

ρ

2

)

(6.16)

+P
(

Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D \ D<j,k)
−ρ, Ĵ6j

n − K̂6k
n ∈ Wj,m, ‖K̄

>k
n ‖ ≤

ρ

2

)

. (6.17)

Since Ĵ6j
n − K̂6k

n ∈ Wj,m implies R←n (∆k) ≤ 2nγj,m ≤ 2nγ̄, we can apply Lemma 6.2 to show that
(6.16) vanishes at an arbitrarily fast polynomial rate by taking γ small enough. Moving on to (6.17),
note that if we choose γ small enough so that 4γ̄ ≤ ρ/2, this event implies J̄>j

n /∈ (D6Lm
)γ̄ , where

Lm , ⌊β−1
α−1 (k −m)⌋. To see this, suppose the opposite, i.e., J̄>j

n ∈ (D6Lm
)γ̄ . Then there exists ξ ∈ D6Lm
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such that ‖J̄>j
n − ξ‖ ≤ 2γ̄. Note also that Ĵ6j

n − K̂6k
n ∈ Wj,m ⊆ (Dj,m)γ̄ implies that there exists η ∈ Dj,m

such that
∥

∥

∥Ĵ6j
n − K̂6k

n − η
∥

∥

∥ ≤ 2γ̄. Then,

dsk

(

η + ξ, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n

)

≤
∥

∥

∥η + ξ −
(

Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n

)∥

∥

∥

≤
∥

∥

∥
η −

(

Ĵ6j
n − K̂6k

n

)∥

∥

∥
+
∥

∥ξ − J̄>j
n

∥

∥+
∥

∥K̄>k
n

∥

∥

≤ 2γ̄ + 2γ̄ + ρ/2 ≤ ρ,

while η+ ξ ∈ Dl′,m′ , where l
′ ≤ j+Lm and m′ ≤ m. This implies that Ĵ6j

n − K̂6k
n + J̄>j

n − K̄>k
n ∈ (Dl′,m′)ρ.

Since

(α− 1)l′ + (β − 1)m′ ≤ (α− 1)(j + Lm) + (β − 1)m ≤ (α − 1)(j +
β − 1

α− 1
(k −m)) + (β − 1)m

= (α− 1)j + (β − 1)k,

and m′ < k, the index pair (l′,m′) has to be in I<j,k. This, in turn, implies that (Dl′,m′)ρ ⊆ (D<j,k)ρ, and

hence, Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈ (D<j,k)ρ, which of course is contradictory to Ĵ6j
n − K̂6k

n + J̄>j
n − K̄>k

n ∈

(D \ D<j,k)
−ρ proving that J̄>j

n /∈ (D6Lm
)γ̄ . In view of this, (6.17) is bounded by P

(

Ĵ6j
n − K̂6k

n ∈

Wj,m, J̄
>j
n ∈ (D \ D6Lm

)−γ̄
)

, and hence, the proof of the proposition is complete if we show that this

probability is o
(

(nν[n,∞))j(nν(−∞,−n])k
)

. We only consider the cases m > 0 and j > 0. The other cases
(m > 0 and j = 0; m = 0 and j > 0; m = 0 and j = 0) are similar but easier. Thus, write

P
(

Ĵ6j
n − K̂6k

n ∈ Wj,m, J̄
>j
n ∈ (D \ D6Lm

)−γ̄
)

≤ P

(

R←n (∆m) > n
γj,m−1
2(k + 1)

, J̄>j
n ∈ (D \ D6Lm

)−γ̄
)

≤ P
(

K̂6m
n ∈ (D \ D6m−1)

−
γl,m−1
4(k+1) , J̄>j

n ∈ (D \ D6Lm
)−γ̄
)

= P
(

K̂6m
n ∈ (D \ D6m−1)

−
γl,m−1
4(k+1)

)

P
(

J̄>j
n ∈ (D \ D6Lm

)−γ̄
)

= P1(n) · P2(n),

where the first inequality is due to Lemma 6.4 (e-iv), and the second inequality is due to Lemma 6.4 (c).
Since Proposition 6.3 guarantees that P1(n) is O ((nν(−∞,−n])m), and

(α− 1)(j + Lm + 1) + (β − 1)m = (α− 1)(j + ⌊
β − 1

α− 1
(k −m)⌋+ 1)

+ (β − 1)m > (α− 1)(j +
β − 1

α− 1
(k −m)) + (β − 1)m

= (α− 1)k + (β − 1)j.

Thus, if we show that P2(n) is O
(

(nν[n,∞))j+Lm+1
)

, then

P1(n) · P2(n) = O
(

(nν[n,∞))j+Lm+1(nν(−∞,−n])m
)

= o
(

(nν[n,∞)j(nν(−∞,−n])k
)

.

Therefore, we can conclude the proof by showing that for any γ̄ > 0,

P2(n) = P
(

J̄>j
n ∈ (D \ D6Lm

)−γ̄
)

= O
(

(nν[n,∞))j+Lm+1
)

.
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To see this, we introduce yet another parameter ǫ ∈ (0, γ̄) and proceed as follows:

P
(

J̄>j
n ∈ (D \ D6Lm

)−γ̄
)

= P
(

J̄>j
n ∈ (D \ D6Lm

)−γ̄ , Ĵ6j+Lm+1
n − Ĵ6j

n ∈ (D \ D6Lm
)−ǫ
)

+P
(

J̄>j
n ∈ (D \D6Lm

)−γ̄ , Ĵ6j+Lm+1
n − Ĵ6j

n /∈ (D \ D6Lm
)−ǫ
)

≤ P
(

J̄>j
n ∈ (D \ D6Lm

)−γ̄ , Q←n (Γj+Lm+1) ≥ nǫ
)

+P
(∥

∥

∥J̄>j
n − (Ĵ6j+Lm+1

n − Ĵ6j
n )
∥

∥

∥ ≥ (γ̄ − ǫ), Q←n (Γj+Lm+1) ≤ 2nǫ
)

≤ P (Q←n (Γj+Lm+1) ≥ nǫ)

+P





∥

∥

∥

∥

∥

∥

J̄>j+Lm+1
n +

1

n

j+Lm+1
∑

l=j+1

−µ+
1 1[Ul,1]

∥

∥

∥

∥

∥

∥

≥ (γ̄ − ǫ), Q←n (Γj+Lm+1) ≤ 2nǫ





≤ P
(

Ĵ6j+Lm+1
n ∈ (D \D6j+Lm

)−ǫ/2
)

+P





∥

∥

∥

∥

∥

∥

j+Lm+1
∑

l=j+1

µ+
1 1[Ul,1]

∥

∥

∥

∥

∥

∥

≥ n
γ̄ − ǫ

2





+P

(

∥

∥J̄>j+Lm+1
n

∥

∥ ≥
γ̄ − ǫ

2
, Q←n (Γj+Lm+1) ≤ 2nǫ

)

,

where the first inequality is from Lemma 6.4 (b) and (c). The first term is O
(

(nν[n,∞))j+Lm+1
)

by
Proposition 6.3, the second term is 0 for sufficiently large n, and the third term vanishes at an arbitrarily
fast polynomial rate if we choose ǫ small enough compared to γ (Lemma 6.2). This concludes the proof.

Recall that Wl,m = D̂l,m \ (D̂l,m−1 ∪ D̂l−1,m), where D̂l,m = (Dl,m)γl,m
, γl,m = γ̄(4k)−l(4j)−m, and

γ̄ = γmax(l,m)∈I<j,k
(4k)l(4j)m.

Lemma 6.4. Suppose that x1 ≥ · · · ≥ xj ≥ 0; ui ∈ (0, 1) for i = 1, . . . , j; y1 ≥ · · · ≥ yk ≥ 0; vi ∈ (0, 1) for
i = 1, . . . , k; u1, . . . , uj , v1, . . . , vk are all distinct.

(a) For any ǫ > 0,

{x ∈ G : d(x, y) < (1 + ǫ)δ implies y ∈ G} ⊆ G−δ ⊆ {x ∈ G : d(x, y) < δ implies y ∈ G}.

Also, (A ∩B)δ ⊆ Aδ ∩Bδ and A−δ ∪B−δ ⊆ (A ∪B)−δ for any A and B.

(b)
∑j

i=1 xi1[ui,1] ∈ (D \ D6j−1)
−δ implies xj ≥ δ.

(c)
∑j

i=1 xi1[ui,1] /∈ (D \ D6j−1)
−δ implies xj ≤ 2δ.

(d)
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi,1] ∈ (D \ D<j,k)
−δ implies xj ≥ δ and yk ≥ δ.

(e) Suppose that
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi,1] ∈ Wl,m.

(e-i) If l ∈ [0, j − 1] then xl+1 ≤ 2γl,m.

(e-ii) If m ∈ [0, k − 1] then ym+1 ≤ 2γl,m.

(e-iii) If l ∈ [1, j] then xl >
γl−1,m

2(j−l+1) .
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(e-iv) If m ∈ [1, k] then ym >
γl,m−1

2(k−m+1) .

(e-v) l ≤ j and m ≤ k.

(f) Suppose that ξ ∈ Dj,k. If l < j or m < k, then ξ is bounded away from Dl,m.

(g) If I(ξ) > (α− 1)j + (β − 1)k, then ξ is bounded away from D<j,k ∪ Dj,k.

Proof. (a) Immediate consequences of the definition.

(b) From (a), we see that
∑j

i=1 xi1[ui,1] ∈ (D\D6j−1)
−δ and

∑j−1
i=1 xi1[ui,1] ∈ D6j−1 implies d

(

∑j
i=1 xi

1[ui,1],
∑j−1

i=1 xi1[ui,1]

)

≥ δ, which is not possible if xj < δ.

(c) We prove that for any ǫ > 0,
∑j

i=1 xi1[ui,1] /∈ (D \ D6j−1)
−δ implies xj < (2 + ǫ)δ. To show this, in

turn, we work with the contrapositive. Suppose that xj > (2 + ǫ)δ. If d(
∑j

i=1 xi1[ui,1], ζ) < (1 + ǫ/2)δ, by
the definition of the Skorokhod metric, there exists a non-decreasing homeomorphism φ of [0, 1] onto itself

such that ‖
∑j

i=1 xi1[ui,1] − ζ ◦ φ‖∞ < (1 + ǫ/2)δ. Note that at each discontinuity point of
∑j

i=1 xi1[yi,1],

ζ ◦ φ should also be discontinuous. Otherwise, the supremum distance between
∑j

i=1 xi1[ui,1] and ζ ◦ φ

has to be greater than (1 + ǫ/2)δ, since the smallest jump size of
∑j

i=1 xi1[ui,1] is greater than (2 + ǫ)δ.
Hence, there has to be at least j discontinuities in the path of ζ; i.e., ζ ∈ D \ D6j−1. We have shown

that d(
∑j

i=1 xi1[ui,1], ζ) < (1 + ǫ/2)δ implies ζ ∈ D \ D6j−1, which in turn, along with (a), shows that
∑j

i=1 xi1[ui,1] ∈ (D \ D6j−1)
−δ.

(d) Suppose that
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi,1] ∈ (D \ D<j,k)
−δ. Since

∑j−1
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi,1] /∈

D \ D<j,k,

xj ≥ dsk

(

j
∑

i=1

xi1[ui,1] −
k
∑

i=1

yi1[vi,1],

j−1
∑

i=1

xi1[ui,1] −
k
∑

i=1

yi1[vi,1]

)

≥ δ.

Similarly, we get yk ≥ δ.
(e) Let ζ ,

∑j
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi,1]. We skip the proofs of (e-ii), (e-iv), and the second claim

of (e-v), since they are essentially identical to the proofs of (e-i), (e-iii), and the first claim of (e-v). For
(e-i), suppose that xl+1 > 2γl,m. Then, for any ζ′ ∈ Dl,m, d(ζ, ζ′) ≥ xl+1/2 > γl,m, since the number of
upward jump doesn’t match—ζ has more—and at least one of ζ’s unmatched jumps has size greater than
xl. This means that infζ′∈Dl,m

d(ζ, ζ′) > γl,m, i.e., ζ /∈ D̂l,m, which is contradictory to ζ ∈ Wl,m. For (e-iii),
suppose that xl ≤ γl−1,m

2(j−l+1) . We will derive a contradiction. Note first that if m < k, (e-ii) guarantees

that ym+1 ≤ 2γl,m, and hence,
∑k

i=m+1 yi ≤ (k − m)2γl,m. For arbitrary m, therefore,
∑k

i=m+1 yi ≤

(k − k ∧m)2γl,m. Let ζ′ ,
∑l−1

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi,1], and ζ
′′ ,

∑l−1
i=1 xi1[ui,1] −

∑m∧k
i=1 yi1[vi,1]. Then

d(ζ, ζ′) ≤ (j − l + 1)xl, and d(ζ′, ζ′′) ≤ (k − k ∧ m)2γl,m. From these and the assumption, d(ζ, ζ′′) ≤

γl−1,m/2+(k−k∧m)2γl,m ≤ γl−1,m, which is contradictory to the assumption that ζ ∈ Wl,m ⊆
(

D̂l−1,m

)c

=
(

(Dl−1,m)γl−1,m

)c
. For the first claim of (e-v), suppose that l > j. Again, we will derive a contradiction.

Note that l > j and (l,m) ∈ I implies that m < k, and as in (e-iii),
∑k

i=m+1 yi ≤ (k − m)2γl,m. Let

ζ′ ,
∑j

i=1 xi1[ui,1]+
∑l−1

i=j+1 ǫ1[ui,1]−
∑k

j=1 yi1[vi,1] and ζ
′′ ,

∑j
i=1 xi1[ui,1]+

∑l−1
i=j+1 ǫ1[ui,1]−

∑m
j=1 yi1[vi,1].

Then, d(ζ, ζ′′) ≤ d(ζ, ζ′)+d(ζ′, ζ′′) ≤ ǫ(l− 1− j)+ (k−m)2γl,m. By choosing ǫ small enough, we can make
d(ζ, ζ′′) ≤ γl−1,m, which is contradictory to ζ ∈ Wl,m.

(f) We omit a detailed proof of (f) since it is almost identical to the proof of (c); roughly speaking, the
distance between ξ and any element in Dl,m is at least half of i) the smallest upward jump size of ξ in case
l < j, or ii) the smallest downward jump size of ξ in case m < k.

(g) Note that in case I(ξ) is finite, D+(ξ) > j or D−(ξ) > k. In this case, the conclusion is immediate
from (f). In case I(ξ) = ∞, either D+(ζ) = ∞, D−(ζ) = ∞, ξ(0) 6= 0, or ξ contains a continuous non-
constant piece. By containing a continuous non-constant piece, we refer to the case that there exist t1 and
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t2 such that t1 < t2, ξ(t1) 6= ξ(t2−) and ξ is continuous on (t1, t2). For the first two cases where the number
of jumps is infinite, the conclusion is an immediate consequence of (f). The case ξ(0) 6= 0 is also obvious.
Now we are left with dealing with the last case, where ξ has a continuous non-constant piece. To discuss

this case, assume w.l.o.g. that ξ(t1) < ξ(t2−). We claim that d(ξ,Dj,k) ≥
ξ(t2−)−ξ(t1)

2(j+1) . Note that for any

step function ζ,

‖ξ − ζ‖ ≥ |ξ(t2−)− ζ(t2−)| ∨ |ξ(t1)− ζ(t1)|

≥ (ξ(t2−)− ζ(t2−)) ∨ (ζ(t1)− ξ(t1))

≥
1

2

{

(ξ(t2−)− ξ(t1))− (ζ(t2−)− ζ(t1))
}

≥
1

2

{

(ξ(t2−)− ξ(t1))−
∑

t∈(t1,t2)

(

ζ(t)− ζ(t−)
)

}

≥
1

2

{

(ξ(t2−)− ξ(t1))− 2D+(ζ)‖ξ − ζ‖
}

,

where the fourth inequality is due to the fact that ‖ξ− ζ‖ ≥ ζ(t)−ζ(t−)
2 for all t ∈ (t1, t2). From this, we get

‖ξ − ζ‖ ≥
ξ(t2−)− ξ(t1)

2(D+(ζ) + 1)
≥
ξ(t2−)− ξ(t1)

2(j + 1)
,

for ζ ∈ Dj,k. Now, suppose that ζ ∈ Dj,k. Since ζ◦φ is again in Dj,k for any non-decreasing homeomorphism
φ of [0, 1] onto itself,

d(ξ, ζ) ≥
ξ(t2−)− ξ(t1)

2(j + 1)
,

which proves the claim.

6.3 Proofs for Section 4

Recall that

I(ξ) ,

{

(α− 1)D+(ξ) + (β − 1)D−(ξ) if ξ is a step function with ξ(0) = 0
∞ otherwise

.

Proof of Theorem 4.2. Observe first that I(·) is a rate function. The level sets {ξ : I(ξ) ≤ x} equal
⋃

(l,m)∈Z2
+

(α−1)l+(β−1)m≤⌊x⌋

Dl,m and are therefore closed—note the level sets are not compact so I(·) is not a good

rate function (see, for example, Dembo and Zeitouni (2009) for the definition and properties of good rate
functions).

Starting with the lower bound, suppose that G is an open set. We assume w.l.o.g. that infξ∈G I(ξ) <∞,
since the inequality is trivial otherwise. Due to the discrete nature of I(·), there exists a ξ∗ ∈ G such that
I(ξ∗) = infξ∈G I(ξ). Set j , D+(ξ

∗) and k , D−(ξ∗). Let u+1 , . . . , u
+
j be the sorted (from the earliest to

the latest) upward jump times of ξ∗; x+1 , . . . , x
+
j be the sorted (from the largest to the smallest) upward

jump sizes of ξ∗; u−1 , . . . , u
−
k be the sorted downward jump times of ξ∗; x−1 , . . . , x

−
k be the sorted downward

jump sizes of ξ∗. Also, let x+j+1 = x−k+1 = 0, u+0 = u−0 = 0, and u+j+1 = u−k+1 = 1. Note that if ζ ∈ Dl,m for

l < j, then d(ξ∗, ζ) ≥ x+j /2 via a similar argument as in the proof of Lemma 6.4 (a). Likewise, if ζ ∈ Dl,m

for m < k, then d(ξ∗, ζ) ≥ x−k /2. Therefore, d(D<j,k, ξ
∗) ≥ (x+j ∧ x−k )/2. On the other hand, since G is

an open set, we can pick δ0 > 0 so that the open ball Bξ∗,δ0 , {ζ ∈ D : d(ζ, ξ) < δ0} centered at ξ∗ with
radius δ0 is a subset of G—i.e., Bξ∗,δ0 ⊂ G. Let δ = (δ0 ∧ x+j ∧ x−k )/4. If j = k = 0, then ξ∗ ≡ 0, and
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hence, {X̄n ∈ G} contains {‖X̄n‖ ≤ δ} which is a subset of Bξ∗,δ. One can apply Lemma A.1 to show that
P(Xn ∈ G) converges to 1, which, in turn, proves the inequality. Now, suppose that either j ≥ 1 or k ≥ 1.
Then, d(Bξ∗,δ,D<j,k) ≥ δ. As d(Bξ∗,δ,D<j,k) > 0 and Bξ∗,δ is open, we see from our sharp asymptotics
(Theorem 3.2) that

Cj,k(Bξ∗,δ) ≤ lim inf
n→∞

(nν[n,∞))−j(nν(−∞,−n])−kP (X̄n ∈ Bξ∗,δ).

From the definition of Cj,k, it follows that Cj(Bξ∗,δ) > 0. To see this, note first that we can assume w.l.o.g.
that x±i ’s are all distinct since G is open (because, if some of the jump sizes are identical, we can pick ǫ
such that Bξ∗,ǫ ⊆ G, and then perturb those jump sizes by ǫ to get a new ξ∗ which still belongs to G while

whose jump sizes are all distinct.) Suppose that ξ∗ =
∑j

l=1 x
+

i+
l

1[u+
i ,1]−

∑k
l=1 x

−
i−
l

1[u−i ,1], where {i
±
1 , . . . , i

±
j }

are permutations of {1, . . . , j}. Let 2δ′ , δ ∧∆+
u ∧∆+

x ∧∆−u ∧∆−x , where ∆+
u = mini=1,...,j+1(u

+
i − u+i−1),

∆+
x = mini=1,...,j(x

+
i−1 − x+i ), ∆

−
u = mini=1,...,k+1(u

−
i − u−i−1), and ∆−x = mini=1,...,k(x

−
i−1 − x−i ). Consider

a subset B′ of Bξ∗,δ:

B′ ,

{ j
∑

l=1

y+
i+
l

1[v+
l
,1] −

k
∑

l=1

y−
i−
l

1[v−
l
,1] :

v+i ∈ (u+i − δ′, u+i + δ′), y+i ∈ (x+i − δ′, x+i + δ′), i = 1, . . . , j;

v−i ∈ (u−i − δ′, u−i + δ′), y−i ∈ (x−i − δ′, x−i + δ′), i = 1, . . . , k

}

.

Then,

Cj,k(Bξ∗,δ)

≥ Cj,k(B
′) = (µα × µα × Leb× Leb) ◦ T−1j,k (B

′)

=

∫

(u+
1 −δ

′,u+
1 +δ′)×···×(u+

j −δ
′,u+

j +δ′)

dLeb ·

∫

(x+
1 −δ

′,x+
1 +δ′)×···×(x+

j −δ
′,x+

j +δ′)

dνα

·

∫

(u−1 −δ
′,u−1 +δ′)×···×(u−

k
−δ′,u−

k
+δ′)

dLeb ·

∫

(x−1 −δ
′,x−1 +δ′)×···×(x−

k
−δ′,x−

k
+δ′)

dνβ

≥ (2δ′)j(2δ′(x+1 )
α)j(2δ′)k(2δ′(x−1 )

β)k > 0.

We conclude that

lim inf
n→∞

logP (X̄n ∈ G)

logn
≥ lim inf

n→∞

logP (X̄n ∈ Bξ∗,δ)

logn

≥ lim inf
n→∞

log(Cj,k(Bξ∗,δ)(nν[n,∞))j(nν(−∞,−n])k(1 + o(1)))

logn

= −
(

(α− 1)j + (β − 1)k
)

,

(6.18)

which is the lower bound. Turning to the upper bound, suppose that K is a compact set. We first consider
the case where infξ∈K I(ξ) < ∞. Pick ξ∗, j and k as in the lower bound, i.e., I(ξ∗) , infξ∈K I(ξ),

j , D+(ξ
∗), and k , D−(ξ

∗). Here we can assume w.l.o.g. either j ≥ 1 or k ≥ 1 since the inequality is
trivial in case j = k = 0. For each ζ ∈ K, either I(ζ) > I(ξ∗), or I(ζ) = I(ξ∗). We construct an open cover
of K by considering these two cases separately:

• If I(ζ) > I(ξ∗), ζ is bounded away from D<j,k ∪ Dj,k (Lemma 6.4 (g)). For each such ζ’s, pick a

δζ > 0 in such a way that d(ζ,D<j,k ∪ Dj,k) > δζ . Set jζ , j and kζ , k. Note that in this case
Cjζ ,kζ

(B̄ζ,δζ ) = 0.
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• If I(ζ) = I(ξ∗), set jζ , D+(ζ) and kζ , D−(ζ). Since they are bounded away from D<jζ ,kζ

(Lemma 6.4 (f)), we can choose δζ > 0 such that d(ζ,D<jζ ,kζ
) > δζ and Cjζ ,kζ

(B̄ζ,δζ ) <∞.

Consider an open cover {Bζ;δζ : ζ ∈ K} of K and its finite subcover {Bζi;δζi
}i=1,...,m. For each ζi, we apply

the sharp asymptotics (Theorem 3.5) to B̄ζi;δζi
and repeat a similar argument to (6.18) to get

lim sup
n→∞

logP (X̄n ∈ B̄ζi;δζi
)

logn
≤ (α− 1)jζi + (β − 1)kζi = −I(ξ∗).

Therefore,

lim sup
n→∞

logP (X̄n ∈ F̄ )

logn
≤ lim sup

n→∞

log
∑m

i=1 P (X̄n ∈ B̄ζi;δζi
)

logn

= max
i=1,...,m

lim sup
n→∞

logP (X̄n ∈ B̄ζi;δζi
)

logn

≤ −I(ξ∗) = − inf
ξ∈K

I(ξ),

completing the proof of the upper bound in case the right-hand side is finite.
Now, turning to the case infξ∈K I(ξ) = ∞, fix an arbitrary finite real number m. Then, D<m,m is

bounded away from each ζ ∈ K. A similar but simpler argument as for the case of finite infimum, one can
show that

lim sup
n→∞

logP (X̄n ∈ K)

logn
≤ −m.

Taking m→ ∞, we arrive at the upper bound.
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A Inequalities

Result 4 (Generalized Kolmogorov inequality; Shneer and Wachtel (2009)). Let Sn = X1 + · · ·+Xn be a
random walk with mean zero increments, i.e., EXi = 0. Then,

P(max
k≤n

Sk ≥ x) ≤ C
nV (x)

x2
,

where V (x) = E(X2
1 ; |X1| ≤ x), for all x > 0.

Result 5 (Etemadi’s inequality). Let X1, ..., Xn be independent real-valued random variables defined on
some common probability space, and let α ≥ 0. Let Sk denote the partial sum Sk = X1 + · · ·+Xk. Then

P

(

max
1≤k≤n

|Sk| ≥ 3α
)

≤ 3 max
1≤k≤n

P
(

|Sk| ≥ α
)

.

Result 6 (Prokhorov’s inequality; Prokhorov (1959)). Suppose that ξi, i = 1, . . . , n are independent,
zero-mean random variables such that there exists a constant c for which |ξi| ≤ c for i = 1, . . . , n, and
∑n

i=1 var ξi <∞. Then

P

(

n
∑

i=1

ξi > x

)

≤ exp

{

−
x

2c
arcsinh

xc

2
∑n

i=1 var ξi

}

,

which, in turn, implies

P

(

n
∑

i=1

ξi > x

)

≤

(

cx
∑n

i=1 var ξi

)− x
2c

.

Lemma A.1 (Etemadi’s inequality for Lévy processes). Let Z be a Lévy process. Then,

P

(

sup
t∈[0,n]

|Z(t)| ≥ δ
)

≤ 3 sup
t∈[0,n]

P
(

|Z(t)| ≥ δ/3
)

.

Proof. Since Z (and hence |Z| also) is in D, sup0≤k≤2m |Z( nk
2m )| converges to supt∈[0,n] |Z(t)| almost surely

as m → ∞. To see this, note that one can choose ti’s such that |Z(ti)| ≥ supt∈[0,n] |Z(t)| − i−1. Since
{ti}’s are in a compact set [0, n], there is a subsequence, say, t′i, such that t′i → t0 for some t0 ∈ [0, n].
The supremum has to be achieved at either t−0 or t0. Either way, with large enough m, sup0≤k≤2m |Z( nk

2m )|
becomes arbitrarily close to the supremum. Now, by bounded convergence,

P

{

sup
t∈[0,n]

|Z(t)| > δ

}

= lim
m→∞

P

{

sup
0≤k≤2m

∣

∣

∣

∣

Z(
nk

2m
)

∣

∣

∣

∣

> δ

}

= lim
m→∞

P

{

sup
0≤k≤2m

∣

∣

∣

∣

∣

k
∑

i=0

(

Z(
ni

2m
)− Z(

n(i − 1)

2m
)

)

∣

∣

∣

∣

∣

> δ

}

≤ lim
m→∞

3 sup
0≤k≤2m

P

{∣

∣

∣

∣

∣

k
∑

i=0

(

Z(
ni

2m
)− Z(

n(i− 1)

2m
)

)

∣

∣

∣

∣

∣

> δ/3

}

= lim
m→∞

3 sup
0≤k≤2m

P

{∣

∣

∣

∣

Z(
nk

2m
)

∣

∣

∣

∣

> δ/3

}

≤ 3 sup
t∈[0,n]

P {|Z(t)| > δ/3} , (A.1)

where Z(t) , 0 for t < 0.
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B List of Notations

• (S, d): complete separable metric space

• Fδ , {x ∈ D : d(x, F ) ≤ δ}

• G−δ , ((Gc)δ)
c

• A◦: interior of A
A−: closure of A
∂A = A− \A◦: boundary of A

• ν: regularly varying Lévy measure with index −α and −β
i.e., ν[n,∞) = n−αL+(n) and ν(−∞,−n] = n−βL−(n)
L+(n) = nαν[n,∞)
L−(n) = nβν(−∞,−n]

• X : Lévy process with Lévy measure ν
Xn(t) = X(nt)
X̄n(t) =

1
nXn(t)− ta− µ+

1 ν
+
1 t or X̄n(t) =

1
nXn(t)− ta− (µ+

1 ν
+
1 − µ−1 ν

−
1 )t

• I<j,k = {(l,m) ∈ Z2
+ \ (j, k) : (α− 1)l+ (β − 1)m ≤ (α− 1)j + (β − 1)k}

I=j,k = {(l,m) ∈ Z2
+ : (α− 1)l+ (β − 1)m = (α− 1)j + (β − 1)k}

I≪j,k = {(l,m) ∈ Z2
+ : (α− 1)l + (β − 1)m < (α− 1)j + (β − 1)k}

• R+: set of non-negative real numbers
Z+: set of non-negative integers

• R
∞↓
+ = {x ∈ R∞+ : x1 ≥ x2 ≥ . . .}

R
j↓
+ = {x ∈ R

j
+ : x1 ≥ x2 ≥ . . . ≥ xj}

Hj = {x ∈ R
∞↓
+ : xj > 0, xj+1 = 0}

H6j = {x ∈ R
∞↓
+ : xj+1 = 0}

Hj,k = {(x, y) ∈ R
∞↓
+ × R

∞↓
+ : xj > 0, xj+1 = 0, yk > 0, yk+1 = 0}

H<j,k =
⋃

(l,m)∈I<j,k
Hl,m

• D = D([0, 1],R): real-valued RCLL functions on [0, 1]
D↑s: subspace of D consisting of non-decreasing step functions vanishing at 0
Dj : subspace of D consisting of non-decreasing step functions vanishing at 0 with j jumps
Dj,k: subspace of D consisting of step functions vanishing at 0 with j upward jumps and k downward
jumps
D6j =

⋃

06l6j Dl

D<j,k =
⋃

(l,m)∈I<j,k
Dl,m

D=j,k =
⋃

(l,m)∈I=j,k
Dl,m

D≪j,k =
⋃

(l,m)∈I≪j,k
Dl,m

• d: Skorokhod metric on D([0, 1],R)

• Ŝj = {(x, u) ∈ R
j↓
+ × [0, 1]j : 0, 1, u1, . . . , uj are all distinct}

Sj = {(x, u) ∈ R
∞↓
+ × [0, 1]∞ : 0, 1, u1, . . . , uj are all distinct}

Sj,k = {(x, y, u, v) ∈ R
∞↓
+ × R

∞↓
+ × [0, 1]∞ × [0, 1]∞ : 0, 1, u1, . . . , uj, v1, . . . , vk are all distinct}.

T̂j : Ŝj → Dj defined by T̂j(x, u) =
∑j

i=1 xi1[ui,1]
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Tm : Sm → D defined by Tm(x, u) =
∑m

i=1 xi1[ui,1]

Tj,k : Sj,k → D defined by Tj,k(x, y, u, v) =
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi,1]

• να(x,∞) = x−α

νjα: restriction (to R
j↓
+ ) of j-fold product measure of να

• Ui, Vi: i.i.d. uniform random variables on [0, 1]

• Cj(·) = E
[

νjα{y ∈ (0,∞)j :
∑j

i=1 yi1[Ui,1] ∈ ·}
]

Cj,k(·) = E
[

νjα × νkβ{(x, y) ∈ (0,∞)j × (0,∞)k :
∑j

i=1 xi1[Ui,1] −
∑k

i=1 yi1[Vi,1] ∈ ·}
]

• ν+1 = ν[1,∞)
µ+
1 = 1

ν+
1

∫

[1,∞)
xν(dx)

ν−1 = ν(−∞,−1]
µ−1 = 1

ν−1

∫

(−∞,−1] xν(dx)

• D+(ξ): number of upward jumps of ξ ∈ D

D−(ξ): number of downward jumps of ξ ∈ D

• J (A) = infξ∈D↑s∩A D+(ξ)

• I(j, k) = (α− 1)j + (β − 1)k

• (J (A),K(A)) = argmin (j,k)∈Z2
+

Dj,k∩A 6=∅

I(j, k)

• I(ξ) ,

{

(α − 1)D+(ξ) + (β − 1)D−(ξ) if ξ is a step function with ξ(0) = 0
∞ otherwise

• γ̄ = γmax(l,m)∈I<j,k
(4k)l(4j)m

γl,m = γ̄(4k)−l(4j)−m

D̂l,m = (Dl,m)γl,m

Wl,m = D̂l,m \ (D̂l,m−1 ∪ D̂l−1,m)

• δ(x,y): Dirac measure concentrated on (x, y)

• Qn(x) = nν[x,∞)
Q←n (y) = inf{s > 0 : nν[s,∞) < y}
Ñn = Nn

(

[0, 1]× [1,∞)
)

Nn =
∑∞

l=1δ(Ul,Q←n (Γl))

• Rn(x) = nν(−∞,−x]
R←n (y) = inf{s > 0 : nν(−∞,−s] < y}
M̃n =Mn

(

[0, 1]× [1,∞)
)

Mn =
∑∞

l=1δ(Vl,Q←n (Γl))

• Jn(s) =
∑Ñn

l=1Q
←
n (Γl)1[Ul,1](s)

D
=
∫

x>1 xN([0, ns]× dx), Γl = E1 + E2 + ...+ El

Kn(s) =
∑M̃n

l=1R
←
n (∆l)1[Vl,1](s)

D
=
∫

x<−1 −xN([0, ns]× dx), ∆l = F1 + F2 + ...+ Fl

Ei’s and Fi’s are i.i.d. standard exponential random variables
Ul’s and Vl’s are i.i.d. uniform variables in [0, 1]
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• J̄n = 1
n

∑Ñn

l=1(Q
←
n (Γl)− µ+

1 )1[Ul,1]

Ĵ6j
n = 1

n

∑j
l=1Q

←
n (Γl)1[Ul,1]

J̌6j
n = 1

n

∑j
l=1 − µ+

1 1[Ul,1],

J̄>j
n = 1

n

∑Ñn

l=j+1(Q
←
n (Γl)− µ+

1 )1[Ul,1],

R̄+
n = 1

n I(Ñn < j)
∑j

l=Ñn+1
(Q←n (Γl)− µ+

1 )1[Ul,1],

K̂6k
n = 1

n

∑k
l=1R

←
n (∆l)1[Vl,1],

K̄n = 1
n

∑M̃n

l=1(R
←
n (∆l)− µ−1 )1[Vl,1],

Ǩ6k
n = 1

n

∑k
l=1 − µ−1 1[Vl,1],

K̄>k
n = 1

n

∑M̃n

l=k+1(R
←
n (∆l)− µ−1 )1[Vl,1],

R̄−n = 1
n I(M̃n < j)

∑j

l=M̃n+1
(R←n (∆l)− µ−1 )1[Vl,1]
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