1,214 research outputs found

    Characteristics of the Paleozoic slope break system and its control on stratigraphic-lithologic traps: An example from the Tarim Basin, western China

    Get PDF
    AbstractBased on comprehensive analyses of seismic and log data, this study indicates that mainly four widespread angular to minor angular unconformities (Tg8, Tg51, Tg5 and Tg3) were formed during the Paleozoic. Through the interpretation of structural unconformities, calculation of eroded thickness, correction of palaeo-water depth and compaction and compilation of the Early Paleozoic structural maps, the Early Paleozoic slope break belt (geomorphologic unit) of the Tarim Basin is subdivided into uplift area, subaqueous uplift area, rift slope break belt, flexure slope break belt (slope belt), depression area and deep basin area. Palaeogeomorphology of the Cambrian-Early Ordovician was approximately in EW trend within which three tectonic units including the Tabei Palaeo-uplift, the northern Depressional Belt and the southern Palaeo-uplift developed respectively and are grouped into two slope break systems namely as the Tabei Palaeo-uplift and the southern Palaeo-uplift. These tectonic units obviously control the deposition of isolated platform, open platform, restricted platform and deep basin. Influenced by extrusion in the Mid-Late Ordovician, the southern and northern subaqueous uplifts gradually elevated and then were eroded. Resultantly two slope break systems developed, namely as the northern and central Palaeo-uplifts which obviously controlled the deposition of provenance area, isolated platform, mixed continental shelf, slope and basin facies. The intensive extrusion of the Mid-Late Ordovician leads to significant tectonic deformation of the Tarim Basin: large area of uplifting and erosion and development of EW trending anticline and syncline. Deposition of shore, tidal flat, delta, shallow marine clastics and deep marine facies is obviously controlled by the Tabei, the southern and the Tadong Palaeo-uplifts. Slope break systems control development of stratigraphic unconformity and thus truncation and onlap unconformity zones become favorable areas in a palaeo-uplift and at a palaeo-slope belt for forming important unconformity traps; Whereas slope (slope break) belt along a palaeo-uplift margin is a geomorphologic unit where high-energy sedimentary facies widely develops, such as reef, oolitic sandy clastics or bioclastic limestone beach bar facies, thus litho-structural composite hydrocarbon accumulations usually develop when tectonic condition is suitable. In addition, large-scale palaeo-uplifts are the most favourable areas for hydrocarbon accumulation developmen

    Evolutionary Stages and Disk Properties of Young Stellar Objects in the Perseus Cloud

    Get PDF
    We investigated the evolutionary stages and disk properties of 211 Young stellar objects (YSOs) across the Perseus cloud by modeling the broadband optical to mid-infrared (IR) spectral energy distribution (SED). By exploring the relationships among the turnoff wave bands lambda_turnoff (longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index alpha_excess at lambda <~ 24 microns, and the disk inner radius R_in (from SED modeling) for YSOs of different evolutionary stages, we found that the median and standard deviation of alpha_excess of YSOs with optically thick disks tend to increase with lambda_turnoff, especially at lambda_turnoff >= 5.8 microns, whereas the median fractional dust luminosities L_dust/L_star tend to decrease with lambda_turnoff. This points to an inside-out disk clearing of small dust grains. Moreover, a positive correlation between alpha_excess and R_in was found at alpha_excess > ~0 and R_in > ~10 ×\times the dust sublimation radius R_sub, irrespective of lambda_turnoff, L_dust/L_star and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing or has little influence on alpha_excess shortward of 24 microns. About 23% of our YSO disks are classified as transitional disks, which have lambda_turnoff >= 5.8 microns and L_dust/L_star >10^(-3). The transitional disks and full disks occupy distinctly different regions on the L_dust/L_star vs. alpha_excess diagram. Taking L_dust/L_star as an approximate discriminator of disks with (>0.1) and without (<0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction respectively. [abridged]Comment: 31 pages, 13 figures, 2 tables. To appear in a special issue of RAA on LAMOST science

    Proteasome Inhibitors

    Get PDF
    To see this patent\u27s abstract, please download it

    SiaMemory: Target Tracking

    Get PDF
    This paper proposes, develops and evaluates a novel object-tracking algorithm that outperforms start-of-the-art method in terms of its robustness. The proposed method compromises Siamese networks, Recurrent Convolutional Neural Networks (RCNNs) and Long Short Term Memory (LSTM) and performs short-term target tracking in real-time. As Siamese networks only generates the current frame tracking target based on the previous frame of image information, it is less effective in handling target’s appearance and disappearance, rapid movement, or deformation. Hence, our method a novel tracking method that integrates improved full-convolutional Siamese networks based on all-CNN, RCNN and LSTM. In order to improve the training efficiency of the deep learning network, a strategy of segmented training based on transfer learning is proposed. For some test video sequences that background clutters, deformation, motion blur, fast motion and out of view, our method achieves the best tracking performance. Using 41 videos from the Object Tracking Benchmark (OTB) dataset and considering the area under the curve for the precision and success rate, our method outperforms the second best by 18.5% and 14.9% respectively

    TAK1 is an essential regulator of BMP signalling in cartilage

    Get PDF
    TGFβ activated kinase 1 (TAK1), a member of the MAPKKK family, controls diverse functions ranging from innate and adaptive immune system activation to vascular development and apoptosis. To analyse the in vivo function of TAK1 in cartilage, we generated mice with a conditional deletion of Tak1 driven by the collagen 2 promoter. Tak1col2 mice displayed severe chondrodysplasia with runting, impaired formation of secondary centres of ossification, and joint abnormalities including elbow dislocation and tarsal fusion. This phenotype resembled that of bone morphogenetic protein receptor (BMPR)1 and Gdf5-deficient mice. BMPR signalling was markedly impaired in TAK1-deficient chondrocytes as evidenced by reduced expression of known BMP target genes as well as reduced phosphorylation of Smad1/5/8 and p38/Jnk/Erk MAP kinases. TAK1 mediates Smad1 phosphorylation at C-terminal serine residues. These findings provide the first in vivo evidence in a mammalian system that TAK1 is required for BMP signalling and functions as an upstream activating kinase for Smad1/5/8 in addition to its known role in regulating MAP kinase pathways. Our experiments reveal an essential role for TAK1 in the morphogenesis, growth, and maintenance of cartilage
    corecore