49 research outputs found

    Light-shift modulated photon-echo

    Get PDF
    We show that the AC-Stark shift (light-shift) is a powerful and versatile tool to control the emission of a photon-echo in the context of optical storage. As a proof-of-principle, we demonstrate that the photon-echo efficiency can be fully modulated by applying light-shift control pulses in an erbium doped solid. The control of the echo emission is attributed to the spatial gradient induced by the light-shift beam

    Phase space density limitation in laser cooling without spontaneous emission

    Full text link
    We study the possibility to enhance the phase space density of non-interacting particles submitted to a classical laser field without spontaneous emission. We clearly state that, when no spontaneous emission is present, a quantum description of the atomic motion is more reliable than semi-classical description which can lead to large errors especially if no care is taken to smooth structures smaller than the Heisenberg uncertainty principle. Whatever the definition of position - momentum phase space density, its gain is severely bounded especially when started from a thermal sample. More precisely, the maximum phase space density, can only be improved by a factor M for M-level atoms. This bound comes from a transfer between the external and internal degrees of freedom. To circumvent this limit, one can use non-coherent light fields, informational feedback cooling schemes, involve collectives states between fields and atoms, or allow a single spontaneous emission evenComment: 3 figures, 4 page

    Piezospectroscopic measurement of high-frequency vibrations in a pulse-tube cryostat

    Full text link
    Vibrations in cryocoolers are a recurrent concern to the end user. They appear in different parts of the acoustic spectrum depending on the refrigerator type, Gifford McMahon or pulse-tube, and with a variable coupling strength to the physical system under interest. Here, we use the piezospectroscopic effect in rare-earth doped crystals at low temperature as a high resolution, contact-less probe for the vibrations. With this optical spectroscopic technique, we obtain and analyze the vibration spectrum up to 700kHz of a 2kW pulse-tube cooler. We attempt an absolute calibration based on known experimental parameters to make our method partially quantitative and to provide a possible comparison with other well-established techniques

    Quantum memory for light: large efficiency at telecom wavelength

    Full text link
    We implement the ROSE protocol in an erbium doped solid, compatible with the telecom range. The ROSE scheme is an adaptation of the standard 2-pulse photon echo to make it suitable for a quantum memory. We observe an efficiency of 40% in a forward direction by using specific orientations of the light polarizations, magnetic field and crystal axes

    Selective optical addressing of nuclear spins through superhyperfine interaction in rare-earth doped solids

    Full text link
    In Er3+^{3+}:Y2_2SiO5_5, we demonstrate the selective optical addressing of the 89^{89}Y3+^{3+} nuclear spins through their superhyperfine coupling with the Er3+^{3+} electronic spins possessing large Land\'e gg-factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3+^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.Comment: 5 pages, 4 figures, supplementary material (3 pages

    Securing coherence rephasing with a pair of adiabatic rapid passages

    Get PDF
    Coherence rephasing is an essential step in quantum storage protocols that use echo-based strategies. We present a thorough analysis on how two adiabatic rapid passages (ARP) are able to rephase atomic coherences in an inhomogeneously broadened ensemble. We consider both the cases of optical and spin coherences, rephased by optical or radio-frequency (rf) ARPs, respectively. We show how a rephasing sequence consisting of two ARPs in a double-echo scheme is equivalent to the identity operator (any state can be recovered), as long as certain conditions are fulfilled. Our mathematical treatment of the ARPs leads to a very simple geometrical interpretation within the Bloch sphere that permits a visual comprehension of the rephasing process. We also identify the conditions that ensure the rephasing, finding that the phase of the optical or rf ARP fields plays a key role in the capability of the sequence to preserve the phase of the superposition state. This settles a difference between optical and rf ARPs, since field phase control is not readily guaranteed in the former case. We also provide a quantitative comparison between π\pi-pulse and ARP rephasing efficiencies, showing the superiority of the latter. We experimentally verify the conclusions of our analysis through rf ARP rephasing sequencies performed on the rare-earth ion-doped crystal Tm3+^{3+}:YAG, of interest in quantum memories.Comment: 24 pages, 7 figure

    Interlaced spin grating for optical wave filtering

    Full text link
    Interlaced Spin Grating is a scheme for the preparation of spectro-spatial periodic absorption gratings in a inhomogeneously broadened absorption profile. It relies on the optical pumping of atoms in a nearby long-lived ground state sublevel. The scheme takes advantage of the sublevel proximity to build large contrast gratings with unlimited bandwidth and preserved average optical depth. It is particularly suited to Tm-doped crystals in the context of classical and quantum signal processing. In this paper, we study the optical pumping dynamics at play in an Interlaced Spin Grating and describe the corresponding absorption profile shape in an optically thick atomic ensemble. We show that, in Tm:YAG, the diffraction efficiency of such a grating can reach 18.3% in the small angle, and 11.6% in the large angle configuration when the excitation is made of simple pulse pairs, considerably outperforming conventional gratings.Comment: 11 pages, 13 figures in Physical Review A, 201

    Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window

    Get PDF
    We study the bandwidth and multiplexing capacity of an erbium-doped optical memory for quantum storage purposes. We concentrate on the protocol ROSE (Revival of a Silenced Echo) because it has the largest potential multiplexing capacity. Our analysis is applicable to other protocols that involve strong optical excitation. We show that the memory performance is limited by instantaneous spectral diffusion and we describe how this effect can be minimised to achieve optimal performance
    corecore