9 research outputs found

    A NOVEL DESIGN OF DUAL BAND MICROSTRIP ANTENNA FOR WIRELESS APPLICATIONS

    Get PDF
    A simple and compact inset fed dual band microstrip antenna is presented. The proposed antenna has a low profile and can easily be fed by using a 50 ohms microstripline. The proposed antenna covers all the 2.4/4.2 GHz WLAN/ RADIO ALTIMETERS operating bands, IEEE WLAN protocol 802.11 b/g employs 2.4 GHz. The antenna is simulated using An soft’s HFSSv11. Which shows good agreement with simulated results, Measured Return loss and Radiation patterns are observed to be nearly omnidirectional, moderate gain and wide frequcency band suitable for wireless applications. The antenna has an overall dimension of only 29.5mm x 38 mm x1.6mm, when printed on a FR4 substrate of dielectric constant 4.4

    Providing Diabetes Education through Phone Calls Assisted in the Better Control of Hyperglycemia and Improved the Knowledge of Patients on Diabetes Management

    No full text
    Purpose: A recent single-arm pilot study from our group showed a significant decrease in HbA1C in Type-2 diabetes individuals provided with SMS and phone call-based education on glycemic control. Considering the preference of participants to phone call-based education, a randomized control trial (RCT) with parallel design was conducted to determine the impact of phone call-based diabetes educational intervention on the control of hyperglycemia and improvement in the knowledge about diabetes management. Objectives: To determine the impact of phone call-based educational intervention on the control of hyperglycemia and improvement in the knowledge about diabetes management. Methodology: The study was conducted for a period of 12 months on a total of 273 Type-2 diabetic patients (interventional group (n = 135); non-interventional group (n = 138)) who had provided consent to participate. Subjects in the case group received weekly phone calls on diabetes education; whereas the control group received no education. HbA1C investigations were carried out at baseline and at every fourth month until the completion of the study period for the subjects in both the groups. The impact of phone call-based education was measured by comparing HbA1C values as well as by measuring the questionnaire-based knowledge scores on diabetes management. Results: At the end of the study period, there was a significant reduction in HbA1C in 58.8% participants (n = 65) and a manifold (2–5-fold) increase in knowledge on diabetes management among participants in the case group (n = 110). However, no significant difference in HbA1C and knowledge score was observed in participants from the control group (n = 115). Conclusion: Phone call-based diabetes education is a viable option to empower patients for better management of Type-2 diabetes

    Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity

    No full text
    Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD(+) (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD(+) precursor) homeostasis. Maintaining adequate NAD(+) pools has been shown to play key roles in life span extension, but factors regulating NAD(+) metabolism and homeostasis are not completely understood. Recently, NAD(+) metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD(+) depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD(+) homeostasis. These studies suggest that NAD(+) metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD(+) metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD(+) homeostasis, and cross-talk among nutrient sensing pathways and NAD(+) homeostasis

    Glucose Sensing and Signal Transduction in Saccharomyces cerevisiae

    No full text
    corecore