47 research outputs found

    Defining an olfactory receptor function in airway smooth muscle cells

    Get PDF
    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (G olf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.open0

    Behavioral genetics and taste

    Get PDF
    This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste

    Acne Scar Subcision

    No full text
    Subcision is a simple and safe office surgery procedure for treatment of depressed acne scars. It can easily be combined with other treatments such as laser, dermaroller and scar revisions for maximum efficacy

    Effects of clinical use and sterilization on surface topography and surface roughness of three commonly used types of orthodontic archwires

    No full text
    Aim: To evaluate the changes in surface topography and roughness of stainless steel (SS), nickel-titanium and beta-titanium (β-Ti) archwires after clinical use and sterilization. Settings and Design: Thirty wires each of SS, nitinol, and β-Ti (3M Unitek) were tested in as received, as received and autoclaved, and clinically retrieved then autoclaved conditions. Materials and Methods: A sterilization protocol of 134°C for 18 min was performed using an autoclave. Surface topography of specimens from each subgroup was examined using an environmental scanning electron microscope (ESEM model Quanta 200, The Netherlands) at ×100, ×1000, and ×2500 magnifications. Surface roughness was measured using arithmetic mean roughness (Ra) values obtained from optical profilometric scanning (Taylor Hobson, Leicester, UK). Statistical Analysis: Data were analyzed by one-way analysis of variance and Tukey's post-hoc procedures. Results: Scanning electron microscope images revealed an increase in surface irregularities in SS and nitinol wires after clinical use. There was a significant increase in Ra values of SS orthodontic wires after intra-oral exposure (P = 0.0002). Conclusion: Surface roughness of SS wires increased significantly after clinical use. Autoclave sterilization did not affect considerably on surface characteristics of any archwire
    corecore