692 research outputs found

    Maximum temperature for an Ideal Gas of U^(1)\hat U(1) Kac-Moody Fermions

    Full text link
    A lagrangian for gauge fields coupled to fermions with the Kac-Moody group as its gauge group yields, for the pure fermions sector, an ideal gas of Kac-Moody fermions. The canonical partition function for the U^(1)\hat U(1) case is shown to have a maximum temperature kTM=λ/πkT_{M} = |\lambda| /\pi, where λ\lambda is the coupling of the super charge operator G0G_0 to the fermions. This result is similar to the case of strings but unlike strings the result is obtained from a well-defined lagrangian.Comment: Needs subeqnarray.sty; To be published in Phys. Rev. D, Dec 15, 1995. Some typographical errors have been corrected in the revised versio

    Alternative Dispute Resolution in India - ADR: status/effectiveness study

    Get PDF
    This study focuses on the effectiveness of Alternative Dispute Resolution mechanisms in India. The broad targets included (a) a comparative analysis of institutional ADRs and ad-hoc ADR, (b) cost and time benefit analysis of ADRs in comparison with adjudication through courts; (c) study of the effectiveness of pre-trial mediation centres; and (e) to make concrete suggestions. The study proves that ADR in India has not been that effective when compared to adjudication through courts. The report favored institutional ADRs given the high rate of corruption and bureaucratic hitches prevalent in ad-hoc ADRs. The study also found that pre-trial mediation centres were developing in the right track

    A Unified Framework for Consensus and Synchronization on Lie Groups admitting a Bi-Invariant Metric

    Full text link
    For a finite number of agents evolving on a Euclidean space and linked to each other by a connected graph, the Laplacian flow that is based on the inter-agent errors, ensures consensus or synchronization for both first and second-order dynamics. When such agents evolve on a circle (the Kuramoto oscillator), the flow that depends on the sinusoid of the inter-agent error angles generalizes the same. In this work, it is shown that the Laplacian flow and the Kuramoto oscillator are special cases of a more general theory of consensus on Lie groups that admit bi-invariant metrics. Such a theory not only enables generalization of these consensus and synchronization algorithms to Lie groups but also provide insight on to the abstract group theoretic and differential geometric properties that ensures convergence in Euclidean space and the circle

    Landau-Ginsberg Theory of Quark Confinement

    Get PDF
    We describe the SU(3) deconfinement transition using Landau-Ginsberg theory. Drawing on perturbation theory and symmetry principles, we construct the free energy as a function of temperature and the Polyakov loop. Once the two adjustable parameters of the model are fixed, the pressure p, energy epsilon and Polyakov loop expectation value P_F are calculable functions of temperature. An excellent fit to the continuum extrapolation of lattice thermodynamics data can be achieved. In an extended form of the model, the glueball potential is responsible for breaking scale invariance at low temperatures. Three parameters are required, but the glueball mass and the gluon condensate are calculable functions of temperature, along with p, epsilon and P_F.Comment: Lattice99(Finite Temperature and Density) <= added keywords only change in revised version, sorry; 3 pages, LaTeX with espcrc2.sty and epsf.tex. Talk presented at Lattice99, Pisa, 29 June - 3 July 1999, to appear in Nucl. Phys. B (Proc.Suppl.

    Organizational factors and total quality management - an empirical study

    Get PDF
    The level of awareness of Total Quality Management (TQM) has increased considerably over the last few years. Different sets of organizational requirements are prescribed by quality management gurus and practitioners for the effective practice of TQM. These requirements do not seem to have been formulated on the basis of systematic empirical research. Many researchers point out that tacit factors, e.g. employee empowerment, open culture and executive commitment, and not TQM tools and techniques alone, could drive TQM success, and that organizations would need to acquire these factors to stay successful. Many TQM advocates have also suggested that a conducive organizational environment would be essential for an effective practice of TQM. However, they did not offer any empirical evidence. There appears to be no empirical study reported in the literature that could establish a relation between TQM and organizational factors. The objective of this paper is to describe an empirical research on TQM conducted in Indian business units carried out recently by considering some organizational factors, e.g. quality of work life, organizational climate and communication. The methodology and findings are discussed in detail

    The factorization method for systems with a complex action -a test in Random Matrix Theory for finite density QCD-

    Get PDF
    Monte Carlo simulations of systems with a complex action are known to be extremely difficult. A new approach to this problem based on a factorization property of distribution functions of observables has been proposed recently. The method can be applied to any system with a complex action, and it eliminates the so-called overlap problem completely. We test the new approach in a Random Matrix Theory for finite density QCD, where we are able to reproduce the exact results for the quark number density. The achieved system size is large enough to extract the thermodynamic limit. Our results provide a clear understanding of how the expected first order phase transition is induced by the imaginary part of the action.Comment: 27 pages, 25 figure

    Anomalous Chiral Symmetry Breaking above the QCD Phase Transition

    Get PDF
    We study the anomalous breaking of U_A(1) symmetry just above the QCD phase transition for zero and two flavors of quarks, using a staggered fermion, lattice discretization. The properties of the QCD phase transition are expected to depend on the degree of U_A(1) symmetry breaking in the transition region. For the physical case of two flavors, we carry out extensive simulations on a 16^3 x 4 lattice, measuring a difference in susceptibilities which is sensitive to U_A(1) symmetry and which avoids many of the staggered fermion discretization difficulties. The results suggest that anomalous effects are at or below the 15% level.Comment: 10 pages including 2 figures and 1 tabl

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure

    Anomaly and a QCD-like phase diagram with massive bosonic baryons

    Full text link
    We study a strongly coupled Z2Z_2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2)×SU(2)×UA(1)×UB(1)\mathrm{SU}(2)\times \mathrm{SU}(2) \times \mathrm{U}_A(1) \times \mathrm{U}_B(1) symmetry which is the same as QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the UA(1)\mathrm{U}_A(1) symmetry and thus mimic the QCD anomaly. At low temperatures TT and small baryon chemical potential μB\mu_B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the TμBT-\mu_B phase diagram of the model and show that it contains three phases : (1) A chirally broken phase at low TT and μB\mu_B, (2) a chirally symmetric baryon superfluid phase at low TT and high μB\mu_B, and (3) a symmetric phase at high TT. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde

    A Multi-level Algorithm for Quantum-impurity Models

    Full text link
    A continuous-time path integral Quantum Monte Carlo method using the directed-loop algorithm is developed to simulate the Anderson single-impurity model in the occupation number basis. Although the method suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization errors. Further, many observables including the impurity susceptibility and a variety of fermionic observables can be calculated efficiently. Finally the new approach allows us to explore a general technique, called the multi-level algorithm, to solve the sign problem. We find that the multi-level algorithm is able to generate an exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be easily generalized to other multi-impurity problems.Comment: 9 pages, 8 figure
    corecore