13 research outputs found

    Time-resolved imaging of guided wave phenomena

    Get PDF
    In the past decade, increasing demand and rapid developments in classical and quantum sciences resulted in advanced novel multipixel single photon detector arrays engineered on a single electronic chip. Silicon single photon avalanche detector (Si-SPAD) is one of the mainstream solution for low level light detection in visible and near-infrared wavelength region due to the dependable amplification of light signal. This thesis mainly focusses on three key experiments to showcase the potential applications of a single photon detector (Megaframe 32) consists of 32×32 square array Si-SPADs with picosecond timing circuits. With ≈ 50 ps timing resolution, each SPAD can perform time-correlated single photon counting independently. First, the concept of multiplexed single-mode wavelength-to-time mapping (WTM) of multimode light was investigated. The spacetime imaging capability of the Megaframe was then demonstrated by imaging the spatial modes emerging from a few-mode fibre enabling WTM of spatial modes. Finally, timeresolved discrete imaging in laser inscribed photonic lattices was demonstrated. By placing a photonic lattice in a linear cavity and re-injecting the output mode profile back to the lattice, the propagation of light was measured in quasi-real time manner. The experimental demonstrations using Megaframe will find applications in Raman spectroscopy, soliton imaging, quantum optics, and discrete waveguide optics

    State-recycling and time-resolved imaging in topological photonic lattices

    Get PDF
    Photonic lattices - arrays of optical waveguides - are powerful platforms for simulating a range of phenomena, including topological phases. While probing dynamics is possible in these systems, by reinterpreting the propagation direction as "time," accessing long timescales constitutes a severe experimental challenge. Here, we overcome this limitation by placing the photonic lattice in a cavity, which allows the optical state to evolve through the lattice multiple times. The accompanying detection method, which exploits a multi-pixel single-photon detector array, offers quasi-real time-resolved measurements after each round trip. We apply the state-recycling scheme to intriguing photonic lattices emulating Dirac fermions and Floquet topological phases. In this new platform, we also realise a synthetic pulsed electric field, which can be used to drive transport within photonic lattices. This work opens a new route towards the detection of long timescale effects in engineered photonic lattices and the realization of hybrid analogue-digital simulators.Comment: Comments are welcom

    In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices

    Full text link
    Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As a proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.Comment: 12 pages of main draft with 10 figures, 2 pages of supplementary information with 3 figures. Total 14 page

    In-situ multicore fibre-based pH mapping through obstacles in integrated microfluidic devices

    No full text
    Abstract Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor

    Observing mode-dependent wavelength-to-time mapping in few-mode fibers using a single-photon detector array

    Get PDF
    Wavelength-to-time mapping (WTM)—stretching ultrashort optical pulses in a dispersive medium such that the instantaneous frequency becomes time-dependent—is usually performed using a single-mode fiber. In a number of applications, such as time-stretch imaging (TSI), the use of this single-mode fiber during WTM limits the achievable sampling rate and the imaging quality. Multimode fiber based WTM is a potential route to overcome this challenge and project a more diverse range of light patterns. Here, we demonstrate the use of a twodimensional single-photon avalanche diode (SPAD) array to image, in a time-correlated single-photon counting (TCSPC) manner, the time- and wavelength-dependent arrival of different spatial modes in a few-mode fiber. We then use a TCSPC spectrometer with a onedimensional SPAD array to record and calibrate the wavelength-dependent and mode-dependent WTM processes. The direct measurement of the WTM of the spatial modes opens a convenient route to estimate group velocity dispersion, differential mode delay, and the effective refractive index of different spatial modes. This is applicable to TSI and ultrafast optical imaging, as well as broader areas such as telecommunications
    corecore