90 research outputs found

    Amphotericin B lipid complex: treatment of invasive fungal infections in patients refractory to or intolerant of amphotericin B deoxycholate

    Get PDF
    Amphotericin B lipid complex (ABLC) was introduced in the late 1990s as a less toxic alternative to amphotericin B (AmB) deoxycholate. ABLC is a safe and effective broad-spectrum drug in the treatment of invasive fungal infections in patients with infection refractory to AmB deoxycholate or in patients intolerant of the same formulation. The drug has not been rigorously evaluated for primary therapy. Recent availability of several newer potent and safe drugs has sharply curtailed the use of potentially nephrotoxic ABLC. However, AmB lipid complex is likely to continue to play a limited albeit significant clinical role in view of the narrow spectrum of activity and significant drug-drug interactions of the newer drugs and emergence of drug-resistant fungi

    Fully Immunocompetent CD8+ T Lymphocytes Are Present in Autologous Haematopoietic Stem Cell Transplantation Recipients Despite an Ineffectual T-Helper Response

    Get PDF
    BACKGROUND: Reduced CD4 T lymphocytes counts can be observed in HIV infection and in patients undergoing autologous haematopoietic stem cell transplantation (ASCT). Nevertheless, whereas opportunistic infections (OI) are frequent in HIV-infected individuals with low cell counts, OI are uncommon in ASCT patients. METHODOLOGY/PRINCIPAL FINDINGS: To verify whether this observation could be secondary to intrinsic HIV-correlated T cell defects, we performed in-depth immunologic analyses in 10 patients with comparable CD4 counts in whom lymphopenia was secondary either to HIV-infection or ASCT-associated immunosuppressive therapy and compared them to age-matched healthy subjects. Results showed the presence of profound alterations in CD4+ T lymphocytes in both groups of patients with respect to healthy controls. Thus, a low percentage of CCR7+ CD4+ T cells and a compensative expansion of CD45RA-CCR7- CD4+ T cells, a reduced IL-2/IFN-gamma cytokine production and impaired recall antigens-specific proliferative responses were detected both in ASCT and HIV patients. In stark contrast, profound differences were detected in CD8+ T-cells between the two groups of patients. Thus, mature CD8+ T cell prevailed in ASCT patients in whom significantly lower CD45RA-CCR7- cells, higher CD45RA+CCR7- CD8+ cells, and an expansion of CCR7+CD8+ cells was detected; this resulted in higher IFN-gamma +/TNFalpha production and granzyme CD8+ expression. The presence of strong CD8 T cells mediated immune responses justifies the more favorable clinical outcome of ASCT compared to HIV patients. CONCLUSION/SIGNIFICANCE: These results indicate that CD8 T cells maturation and functions can be observed even in the face of a profound impairment of CD4+ T lymphocytes in ASCT but not in HIV patients. Primary HIV-associated CD8 defects or an imprinting by an intact CD4 T cell system in ASCT could justify these results

    A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis

    Treatment of invasive fungal infections in cancer patients—Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO)

    Full text link

    Isavuconazole for the treatment of invasive aspergillosis and mucormycosis: current evidence, safety, efficacy, and clinical recommendations

    No full text
    Suganthini Krishnan Natesan,1,2 Pranatharthi H Chandrasekar1 1Division of Infectious Diseases, Department of Internal Medicine, Wayne State University, 2John D Dingell VA Medical Center, Detroit, MI, USA Abstract: The majority of invasive mold infections diagnosed in immunocompromised cancer patients include invasive aspergillosis (IA) and mucormycosis. Despite timely and effective therapy, mortality remains considerable. Antifungal agents currently available for the management of these serious infections include triazoles, polyenes, and echinocandins. Until recently, posaconazole has been the only triazole with a broad spectrum of anti-mold activity against both Aspergillus sp. and mucorales. Other clinically available triazoles voriconazole and itraconazole, with poor activity against mucorales, have significant drug interactions in addition to a side effect profile inherent for all triazoles. Polyenes including lipid formulations pose a problem with infusion-related side effects, electrolyte imbalance, and nephrotoxicity. Echinocandins are ineffective against mucorales and are approved as salvage therapy for refractory IA. Given that all available antifungal agents have limitations, there has been an unmet need for a broad-spectrum anti-mold agent with a favorable profile. Following phase III clinical trials that started in 2006, isavuconazole (ISZ) seems to fit this profile. It is the first novel triazole agent recently approved by the United States Food and Drug Administration (FDA) for the treatment of both IA and mucormycosis. This review provides a brief overview of the salient features of ISZ, its favorable profile with regard to spectrum of antifungal activity, pharmacokinetic and pharmacodynamic parameters, drug interactions and tolerability, clinical efficacy, and side effects. Keywords: isavuconazole, aspergillosis, mucormycosis, efficacy, antifungal therapy, novel azole, tolerability, drug interaction
    corecore