14 research outputs found

    Novel multiplex technology for diagnostic characterization of rheumatoid arthritis

    Get PDF
    Abstract Introduction The aim of this study was to develop a clinical-grade, automated, multiplex system for the differential diagnosis and molecular stratification of rheumatoid arthritis (RA). Methods We profiled autoantibodies, cytokines, and bone-turnover products in sera from 120 patients with a diagnosis of RA of < 6 months' duration, as well as in sera from 27 patients with ankylosing spondylitis, 28 patients with psoriatic arthritis, and 25 healthy individuals. We used a commercial bead assay to measure cytokine levels and developed an array assay based on novel multiplex technology (Immunological Multi-Parameter Chip Technology) to evaluate autoantibody reactivities and bone-turnover markers. Data were analyzed by Significance Analysis of Microarrays and hierarchical clustering software. Results We developed a highly reproducible, automated, multiplex biomarker assay that can reliably distinguish between RA patients and healthy individuals or patients with other inflammatory arthritides. Identification of distinct biomarker signatures enabled molecular stratification of early-stage RA into clinically relevant subtypes. In this initial study, multiplex measurement of a subset of the differentiating biomarkers provided high sensitivity and specificity in the diagnostic discrimination of RA: Use of 3 biomarkers yielded a sensitivity of 84.2% and a specificity of 93.8%, and use of 4 biomarkers a sensitivity of 59.2% and a specificity of 96.3%. Conclusions The multiplex biomarker assay described herein has the potential to diagnose RA with greater sensitivity and specificity than do current clinical tests. Its ability to stratify RA patients in an automated and reproducible manner paves the way for the development of assays that can guide RA therapy.http://deepblue.lib.umich.edu/bitstream/2027.42/116025/1/13075_2010_Article_3144.pd

    miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells

    Get PDF
    Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs) grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs), and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications

    Autoantibody Epitope Spreading in the Pre-Clinical Phase Predicts Progression to Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a prototypical autoimmune arthritis affecting nearly 1% of the world population and is a significant cause of worldwide disability. Though prior studies have demonstrated the appearance of RA-related autoantibodies years before the onset of clinical RA, the pattern of immunologic events preceding the development of RA remains unclear. To characterize the evolution of the autoantibody response in the preclinical phase of RA, we used a novel multiplex autoantigen array to evaluate development of the anti-citrullinated protein antibodies (ACPA) and to determine if epitope spread correlates with rise in serum cytokines and imminent onset of clinical RA. To do so, we utilized a cohort of 81 patients with clinical RA for whom stored serum was available from 1–12 years prior to disease onset. We evaluated the accumulation of ACPA subtypes over time and correlated this accumulation with elevations in serum cytokines. We then used logistic regression to identify a profile of biomarkers which predicts the imminent onset of clinical RA (defined as within 2 years of testing). We observed a time-dependent expansion of ACPA specificity with the number of ACPA subtypes. At the earliest timepoints, we found autoantibodies targeting several innate immune ligands including citrullinated histones, fibrinogen, and biglycan, thus providing insights into the earliest autoantigen targets and potential mechanisms underlying the onset and development of autoimmunity in RA. Additionally, expansion of the ACPA response strongly predicted elevations in many inflammatory cytokines including TNF-Ξ±, IL-6, IL-12p70, and IFN-Ξ³. Thus, we observe that the preclinical phase of RA is characterized by an accumulation of multiple autoantibody specificities reflecting the process of epitope spread. Epitope expansion is closely correlated with the appearance of preclinical inflammation, and we identify a biomarker profile including autoantibodies and cytokines which predicts the imminent onset of clinical arthritis

    Plasma Proteins Present in Osteoarthritic Synovial Fluid Can Stimulate Cytokine Production via Toll-Like Receptor 4

    Get PDF
    Introduction Osteoarthritis (OA) is a degenerative disease characterized by cartilage breakdown in the synovial joints. The presence of low-grade inflammation in OA joints is receiving increasing attention, with synovitis shown to be present even in the early stages of the disease. How the synovial inflammation arises is unclear, but proteins in the synovial fluid of affected joints could conceivably contribute. We therefore surveyed the proteins present in OA synovial fluid and assessed their immunostimulatory properties. Methods We used mass spectrometry to survey the proteins present in the synovial fluid of patients with knee OA. We used a multiplex bead-based immunoassay to measure levels of inflammatory cytokines in serum and synovial fluid from patients with knee OA and from patients with rheumatoid arthritis (RA), as well as in sera from healthy individuals. Significant differences in cytokine levels between groups were determined by significance analysis of microarrays, and relations were determined by unsupervised hierarchic clustering. To assess the immunostimulatory properties of a subset of the identified proteins, we tested the proteins\u27 ability to induce the production of inflammatory cytokines by macrophages. For proteins found to be stimulatory, the macrophage stimulation assays were repeated by using Toll-like receptor 4 (TLR4)-deficient macrophages. Results We identified 108 proteins in OA synovial fluid, including plasma proteins, serine protease inhibitors, proteins indicative of cartilage turnover, and proteins involved in inflammation and immunity. Multiplex cytokine analysis revealed that levels of several inflammatory cytokines were significantly higher in OA sera than in normal sera, and levels of inflammatory cytokines in synovial fluid and serum were, as expected, higher in RA samples than in OA samples. As much as 36% of the proteins identified in OA synovial fluid were plasma proteins. Testing a subset of these plasma proteins in macrophage stimulation assays, we found that Gc-globulin, Ξ±1-microglobulin, and Ξ±2-macroglobulin can signal via TLR4 to induce macrophage production of inflammatory cytokines implicated in OA. Conclusions Our findings suggest that plasma proteins present in OA synovial fluid, whether through exudation from plasma or production by synovial tissues, could contribute to low-grade inflammation in OA by functioning as so-called damage-associated molecular patterns in the synovial joint

    The number of elevated autoantibodies and cytokines increase as individuals in the preclinical period approach the clinical diagnosis of RA.

    No full text
    <p>A–C, Mean titers of CCP2 (A), mean total number of ACPAs (B), and mean total number of cytokines (C) were evaluated at each time preclinical timepoint demonstrating a parallel rise in number of ACPA epitopes with rise in anti-CCP2 titer. D, The percent of subjects with elevated levels of each cytokine was evaluated in relation to number of ACPA subtypes present (representative examples of 48 measured cytokines) E, The proportion of subjects positive for each ACPA subtype was evaluated over the preclinical period. The X axis represents days relative to the diagnosis of RA. The Y axis represents the proportion of pre-clinical RA patients with positive value for each marker relative to total number of specimens available for analysis at that timepoint. A–E, Anti-CCP2 antibody titers were measured by CCP2 ELISA (A), ACPA subtypes were measured using a custom multiplex autoantigen bead array, serum cytokine concentrations were measured using commercial bead based multiplex cytokine kits.</p
    corecore