152 research outputs found

    Convergence analysis of a multigrid algorithm for the acoustic single layer equation

    Get PDF
    We present and analyze a multigrid algorithm for the acoustic single layer equation in two dimensions. The boundary element formulation of the equation is based on piecewise constant test functions and we make use of a weak inner product in the multigrid scheme as proposed in \cite{BLP94}. A full error analysis of the algorithm is presented. We also conduct a numerical study of the effect of the weak inner product on the oscillatory behavior of the eigenfunctions for the Laplace single layer operator

    A frequency-independent boundary element method for scattering by two-dimensional screens and apertures

    Get PDF
    We propose and analyse a hybrid numerical-asymptotic hphp boundary element method for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high frequency asymptotics of the solution. Our numerical results suggest that fi�xed accuracy can be achieved at arbitrarily high frequencies with a frequency-independent computational cost. Our analysis does not capture this observed behaviour completely, but we provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom NN increases, and that to achieve any desired accuracy it is sufficient to increase NN in proportion to the square of the logarithm of the frequency as the frequency increases (standard boundary element methods require NN to increase at least linearly with frequency to retain accuracy). We also show how our method can be applied to the complementary "breakwater" problem of propagation through an aperture in an infinite sound-hard screen

    Interpolation of Hilbert and Sobolev Spaces:\ud Quantitative Estimates and Counterexamples

    Get PDF
    This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω)H^s(\Omega) and H~s(Ω)\tilde{H}^s(\Omega), for sRs\in \mathbb{R} and an open ΩRn\Omega\subset \mathbb{R}^n. We exhibit examples in one and two dimensions of sets Ω\Omega for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω\Omega is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large
    corecore