152 research outputs found
Recommended from our members
A wavenumber independent boundary element method for an acoustic scattering problem
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity
Convergence analysis of a multigrid algorithm for the acoustic single layer equation
We present and analyze a multigrid algorithm for the acoustic single layer
equation in two dimensions. The boundary element formulation of the equation is
based on piecewise constant test functions and we make use of a weak inner
product in the multigrid scheme as proposed in \cite{BLP94}. A full error
analysis of the algorithm is presented. We also conduct a numerical study of
the effect of the weak inner product on the oscillatory behavior of the
eigenfunctions for the Laplace single layer operator
A frequency-independent boundary element method for scattering by two-dimensional screens and apertures
We propose and analyse a hybrid numerical-asymptotic boundary element method for time-harmonic scattering of an incident plane wave by an arbitrary collinear array of sound-soft two-dimensional screens. Our method uses an approximation space enriched with oscillatory basis functions, chosen to capture the high frequency asymptotics of the solution. Our numerical results suggest that fi�xed accuracy can be achieved at arbitrarily high frequencies with a frequency-independent computational cost. Our analysis does not capture this observed behaviour completely, but we provide a rigorous frequency-explicit error analysis which proves that the method converges exponentially as the number of degrees of freedom increases, and that to achieve any desired accuracy it is sufficient to increase in proportion to the square of the logarithm of the frequency as the frequency increases (standard boundary element methods require to increase at least linearly with frequency to retain accuracy). We also show how our method can be applied to the complementary "breakwater" problem of propagation through an aperture in an infinite sound-hard screen
Recommended from our members
Padé approximants for the acoustical characteristics of rigid frame porous media
In this paper it is shown that a number of theoretical models of the acoustical properties of rigid frame porous media, especially those involving ratios of Bessel functions of complex argument, can be accurately approximated and greatly simplified by the use of Padé approximation techniques. In the case of the model of Attenborough [J. Acoust. Soc. Am. 81, 93–102 (1987)] rational approximations are produced for the characteristic impedance, propagation constant, dynamic compressibility, and dynamic density, as a function of frequency and the material parameters. The model proposed by Stinson and Champou
Recommended from our members
Acoustic scattering : high frequency boundary element methods and unified transform methods
We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction
gratings
Recommended from our members
An integral equation method for a boundary value problem arising in unsteady water wave problems
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result
is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem.
Keywords. Boundary integral equation method, Water waves, Laplace’
Recommended from our members
Acoustic scattering : high frequency boundary element methods and unified transform methods
The file archived on this institutional repository is a preprint available at: https://arxiv.org/abs/1410.6137 . It may not have been certified by peer review. The version of record published by Society for Industrial and Applied Mathematics (SIAM) is available at: https://epubs.siam.org/doi/10.1137/1.9781611973822.ch6 .We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numericalasymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. DeSanto and co-authors, for problems of acoustic scattering by diffraction gratings.SL supported by EPSRC grants EP/K000012/1 and EP/K037862/1
Interpolation of Hilbert and Sobolev Spaces:\ud Quantitative Estimates and Counterexamples
This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces and , for and an open . We exhibit examples in one and two dimensions of sets for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large
Recommended from our members
A high frequency boundary element method for scattering by convex polygons
In this paper we propose and analyze a hybrid boundary element method for the solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which the approximation space is enriched with oscillatory basis functions which efficiently capture the high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical examples, exponential convergence with respect to the order of the polynomials, moreover providing rigorous error estimates for our approximations to the solution and to the far field pattern, in which the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that, to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods
Recommended from our members
Padé approximants for the acoustical properties of rigid frame porous media with pore size distributions
Expressions for the viscosity correction function, and hence bulk complex impedance, density, compressibility, and propagation constant, are obtained for a rigid frame porous medium whose pores are prismatic with fixed cross-sectional shape, but of variable pore size distribution. The lowand high-frequency behavior of the viscosity correction function is derived for the particular case of a log-normal pore size distribution, in terms of coefficients which can, in general, be computed numerically, and are given here explicitly for the particular cases of pores of equilateral triangular, circular, and slitlike cross-section. Simple approximate formulae, based on two-point Pade´ approximants for the viscosity correction function are obtained, which avoid a requirement for numerical integration or evaluation of special functions, and their accuracy is illustrated and investigated for the three pore shapes already mentione
- …