9,297 research outputs found

    No Persistent Pulsations in Aquila X-1 as it Fades into Quiescence

    Get PDF
    We searched for coherent X-ray pulsations from Aql X-1 in a series of RXTE observations taken shortly after a recent outburst. During the course of these observations, Aql X-1 passes through an apparent "propeller" phase as its luminosity fades to its quiescent value. No pulsations were detected, and we place upper limits (ranging from 0.52% to 9.0%) on the fractional rms amplitude of any periodic signal contained in the various data sets searched. This result has implications for the geometry of the system, if the quiescent luminosity is due to continued low-level accretion. Alternatively, our result supports the idea that the quiescent luminosity may be due to thermal emission

    VLA Observations of the Infrared Dark Cloud G19.30+0.07

    Full text link
    We present Very Large Array observations of ammonia (NH3) (1,1), (2,2), and CCS (2_1-1_0) emission toward the Infrared Dark Cloud (IRDC) G19.30+0.07 at ~22GHz. The NH3 emission closely follows the 8 micron extinction. The NH3 (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of ~10 to 20K and NH3 column densities of ~10^15 cm^-2. The estimated total mass of G19.30+0.07 is ~1130 Msun. The cloud comprises four compact NH3 clumps of mass ~30 to 160 Msun. Two coincide with 24 micron emission, indicating heating by protostars, and show evidence of outflow in the NH3 emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4GHz emission suggests that the IRDC contains no bright HII regions, and places a limit on the spectral type of an embedded ZAMS star to early-B or later. From the NH3 emission we find G19.30+0.07 is composed of three distinct velocity components, or "subclouds." One velocity component contains the two 24 micron sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH3 and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH3 predominantly in the high-density clumps, and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.Comment: 29 pages, 9 figures, accepted for publication by ApJ. Please contact the authors for higher resolution versions of the figure

    Microcanonical Origin of the Maximum Entropy Principle for Open Systems

    Full text link
    The canonical ensemble describes an open system in equilibrium with a heat bath of fixed temperature. The probability distribution of such a system, the Boltzmann distribution, is derived from the uniform probability distribution of the closed universe consisting of the open system and the heat bath, by taking the limit where the heat bath is much larger than the system of interest. Alternatively, the Boltzmann distribution can be derived from the Maximum Entropy Principle, where the Gibbs-Shannon entropy is maximized under the constraint that the mean energy of the open system is fixed. To make the connection between these two apparently distinct methods for deriving the Boltzmann distribution, it is first shown that the uniform distribution for a microcanonical distribution is obtained from the Maximum Entropy Principle applied to a closed system. Then I show that the target function in the Maximum Entropy Principle for the open system, is obtained by partial maximization of Gibbs-Shannon entropy of the closed universe over the microstate probability distributions of the heat bath. Thus, microcanonical origin of the Entropy Maximization procedure for an open system, is established in a rigorous manner, showing the equivalence between apparently two distinct approaches for deriving the Boltzmann distribution. By extending the mathematical formalism to dynamical paths, the result may also provide an alternative justification for the principle of path entropy maximization as well.Comment: 12 pages, no figur

    Network synchronization of groups

    Full text link
    In this paper we study synchronized motions in complex networks in which there are distinct groups of nodes where the dynamical systems on each node within a group are the same but are different for nodes in different groups. Both continuous time and discrete time systems are considered. We initially focus on the case where two groups are present and the network has bipartite topology (i.e., links exist between nodes in different groups but not between nodes in the same group). We also show that group synchronous motions are compatible with more general network topologies, where there are also connections within the groups

    Out-Of-Focus Holography at the Green Bank Telescope

    Get PDF
    We describe phase-retrieval holography measurements of the 100-m diameter Green Bank Telescope using astronomical sources and an astronomical receiver operating at a wavelength of 7 mm. We use the technique with parameterization of the aperture in terms of Zernike polynomials and employing a large defocus, as described by Nikolic, Hills & Richer (2006). Individual measurements take around 25 minutes and from the resulting beam maps (which have peak signal to noise ratios of 200:1) we show that it is possible to produce low-resolution maps of the wavefront errors with accuracy around a hundredth of a wavelength. Using such measurements over a wide range of elevations, we have calculated a model for the wavefront-errors due to the uncompensated gravitational deformation of the telescope. This model produces a significant improvement at low elevations, where these errors are expected to be the largest; after applying the model, the aperture efficiency is largely independent of elevation. We have also demonstrated that the technique can be used to measure and largely correct for thermal deformations of the antenna, which often exceed the uncompensated gravitational deformations during daytime observing. We conclude that the aberrations induced by gravity and thermal effects are large-scale and the technique used here is particularly suitable for measuring such deformations in large millimetre wave radio telescopes.Comment: 10 pages, 7 figures (accepted by Astronomy & Astrophysics

    The Chemistry and Biology of Bactobolin: A 10-Year Collaboration with Natural Product Chemist Extraordinaire Jon Clardy

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Natural Products, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see doi.org/10.1021/acs.jnatprod.9b01237.Bactobolin is a hybrid natural product with potent cytotoxic activity. Its production from Burkholderia thailandensis was reported as part of a collaboration between the Greenberg and Clardy laboratories in 2010. The collaboration sparked a series of studies leading to the discovery of new analogues and associated structure–activity relationships, the identification of the bactobolin biosynthetic gene cluster and assembly of its unusual amino acid building block, the molecular target of and resistance to the antibiotic, and finally an X-ray crystal structure of the ribosome–bactobolin complex. Herein, we review the collaborations that led to our current understanding of the chemistry and biology of bactobolin

    cr sn: the significance of macroconidiation for mutant hunts

    Get PDF
    cr sn: significance of macroconidiation for mutant hunt

    Noninvasive Prenatal Diagnosis of Single-Gene Diseases: The Next Frontier

    Get PDF
    BACKGROUND: Cell-free fetal DNA (cffDNA) is present in the maternal blood from around 4 weeks gestation and makes up 5%-20% of the total circulating cell-free DNA (cfDNA) in maternal plasma. Presence of cffDNA has allowed development of noninvasive prenatal diagnosis (NIPD) for single-gene disorders. This can be performed from 9 weeks gestation and offers a definitive diagnosis without the miscarriage risk associated with invasive procedures. One of the major challenges is distinguishing fetal mutations in the high background of maternal cfDNA, and research is currently focusing on the technological advances required to solve this problem. CONTENT: Here, we review the literature to describe the current status of NIPD for monogenic disorders and discuss how the evolving methodologies and technologies are expected to impact this field in both the commercial and public healthcare setting. SUMMARY: NIPD for single-gene diseases was first reported in 2000 and took 12 years to be approved for use in a public health service. Implementation has remained slow but is expected to increase as this testing becomes cheaper, faster, and more accurate. There are still many technical and analytical challenges ahead, and it is vital that discussions surrounding the ethical and social impact of NIPD take account of the considerations required to implement these services safely into the healthcare setting, while keeping up with the technological advances
    corecore