7,553 research outputs found
A Call for Abolition: The Disavowal and Displacement of Race in Critical Security Studies
We offer a rejoinder to Security Dialogue’s call for reparative work on race and racism in Critical Security Studies, questioning the ability of a discipline at the heart of an Antiblack world, to engage in truly reparative practices. The attempt to incorporate questions of race and racism into the discipline requires a disavowal, as it denies that Critical Security Studies emerged from and is embedded in systems, structures and institutions of power that rely on Antiblackness. This leads to a displacement, for it assumes that race and racism remain separable from Critical Security Studies, refusing to acknowledge that the discipline has always been part of the problem. Thus, we make two main points in response to calls for reparation from within Critical Security Studies. Firstly, that there can be no openings for truly reparative work from the position of the discipline, it remains within the grounds of Antiblackness. Secondly, that there can be no repair of Critical Security Studies, there can be no ethico-political future for it other than abolition
After the End of the World? Rethinking Temporalities of Critique and Affirmation in the Anthropocene
The contemporary era of the Anthropocene has undermined linear views of progress and development. In its wake, alternative futural imaginaries have become central to critical and decolonial accounts in the discipline of International Relations. We argue that radical imaginaries of alternative non-modern futures risk failing to account fully for the ongoing violence and exclusions of modernity. We identify two strands of Anthropocene work, the first focusing on critique and reconstruction of governance in the face of climate change and environmental destruction, and the second looking for decolonial affirmative ways of being drawn from the experiences of the dispossessed of modernity. Both these approaches to futurity seek to move beyond a modernist world to new futures. In our argument, we set out an alternative perspective, the Black Horizon, which rejects the call to imagine new productive futures, and instead focuses on the deconstruction of modernity, in search of ending the current world of antiblackness, rather than critique or affirm its existence. Thus, even though contemporary critical and decolonial approaches stress the attention to ontology, alterity, and difference, in their attempts to ground alternative worlds in existing practices or knowledges, they offer salvific alternatives, whilst leaving the foundations of our current world intact
Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain
Using computer simulations of over 100,000 atoms, the mechanism for the
hydrophobic collapse of an idealized hydrated chain is obtained. This is done
by coarse-graining the atomistic water molecule positions over 129,000
collective variables that represent the water density field and then using the
string method in these variables to compute the minimum free energy pathway
(MFEP) for the collapsing chain. The dynamical relevance of the MFEP (i.e. its
coincidence with the mechanism of collapse) is validated a posteriori using
conventional molecular dynamics trajectories. Analysis of the MFEP provides
atomistic confirmation for the mechanism of hydrophobic collapse proposed by
ten Wolde and Chandler. In particular, it is shown that lengthscale-dependent
hydrophobic dewetting is the rate-limiting step in the hydrophobic collapse of
the considered chain.Comment: 11 pages, 7 figures, including supporting informatio
Fluctuation-dissipation ratios in the dynamics of self-assembly
We consider two seemingly very different self-assembly processes: formation
of viral capsids, and crystallization of sticky discs. At low temperatures,
assembly is ineffective, since there are many metastable disordered states,
which are a source of kinetic frustration. We use fluctuation-dissipation
ratios to extract information about the degree of this frustration. We show
that our analysis is a useful indicator of the long term fate of the system,
based on the early stages of assembly.Comment: 8 pages, 6 figure
Equation of state for hard sphere fluids with and without Kac tails
In this note, we propose a simple derivation of the one dimensional hard rod
equation of state, with and without a Kac tail (appended long range and weak
potential). The case of hard spheres in higher dimension is also addressed and
it is shown there that our arguments --which avoid any mathematical
complication-- allow to recover the virial form of the equation of state in a
direct way.Comment: pedagogical pape
Entropy and Temperature of a Static Granular Assembly
Granular matter is comprised of a large number of particles whose collective
behavior determines macroscopic properties such as flow and mechanical
strength. A comprehensive theory of the properties of granular matter,
therefore, requires a statistical framework. In molecular matter, equilibrium
statistical mechanics, which is founded on the principle of conservation of
energy, provides this framework. Grains, however, are small but macroscopic
objects whose interactions are dissipative since energy can be lost through
excitations of the internal degrees of freedom. In this work, we construct a
statistical framework for static, mechanically stable packings of grains, which
parallels that of equilibrium statistical mechanics but with conservation of
energy replaced by the conservation of a function related to the mechanical
stress tensor. Our analysis demonstrates the existence of a state function that
has all the attributes of entropy. In particular, maximizing this state
function leads to a well-defined granular temperature for these systems.
Predictions of the ensemble are verified against simulated packings of
frictionless, deformable disks. Our demonstration that a statistical ensemble
can be constructed through the identification of conserved quantities other
than energy is a new approach that is expected to open up avenues for
statistical descriptions of other non-equilibrium systems.Comment: 5 pages, 4 figure
Io's radar properties
Arecibo 13 cm wavelength radar observations during 1987-90 have yielded echoes from Io on each of 11 dates. Whereas Voyager imaged parts of the satellite at resolutions of several km and various visible/infrared measurements have probed the surfaces's microscale properties, the radar data yield new information about the nature of the surface at cm to km scales. Our observations provide fairly thorough coverage and reveal significant heterogeneity in Io's radar properties. A figure is given showing sums of echo spectra from 11 dates
Entropy and density of states from isoenergetic nonequilibrium processes
Two identities in statistical mechanics involving entropy differences (or
ratios of density of states) at constant energy are derived. The first provides
a nontrivial extension of the Jarzynski equality to the microcanonical ensemble
[C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a
``fast-switching'' version of the adiabatic switching method for computing
entropies [M. Watanabe, W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The
second is a thermodynamic integration formula analogous to a well-known
expression for free energies, and follows after taking the quasistatic limit of
the first. Both identities can be conveniently used in conjunction with a
scaling relation (herein derived) that allows one to extrapolate measurements
taken at a single energy to a wide range of energy values. Practical aspects of
these identities in the context of numerical simulations are discussed.Comment: 5 pages, no figure
Perturbation theory of the mass enhancement for a polaron coupled to acoustic phonons
We use both a perturbative Green's function analysis and standard
perturbative quantum mechanics to calculate the decrease in energy and the
effective mass for an electron interacting with acoustic phonons. The
interaction is between the difference in lattice displacements for neighbouring
ions, and the hopping amplitude for an electron between those two sites. The
calculations are performed in one, two, and three dimensions, and comparisons
are made with results from other electron-phonon models. We also compute the
spectral function and quasiparticle residue, as a function of characteristic
phonon frequency. There are strong indications that this model is always
polaronic on one dimension, where an unusual relation between the effective
mass and the quasiparticle residue is also found.Comment: 9 pages, 5 figures, submitted to PR
Solar system constraints on the Dvali-Gabadadze-Porrati braneworld theory of gravity
A number of proposals have been put forward to account for the observed
accelerating expansion of the Universe through modifications of gravity. One
specific scenario, Dvali-Gabadadze-Porrati (DGP) gravity, gives rise to a
potentially observable anomaly in the solar system: all planets would exhibit a
common anomalous precession, dw/dt, in excess of the prediction of General
Relativity. We have used the Planetary Ephemeris Program (PEP) along with
planetary radar and radio tracking data to set a constraint of |dw/dt| < 0.02
arcseconds per century on the presence of any such common precession. This
sensitivity falls short of that needed to detect the estimated universal
precession of |dw/dt| = 5e-4 arcseconds per century expected in the DGP
scenario. We discuss the fact that ranging data between objects that orbit in a
common plane cannot constrain the DGP scenario. It is only through the relative
inclinations of the planetary orbital planes that solar system ranging data
have sensitivity to the DGP-like effect of universal precession. In addition,
we illustrate the importance of performing a numerical evaluation of the
sensitivity of the data set and model to any perturbative precession.Comment: 9 pages, 2 figures, accepted for publication in Phys. Rev.
- …