12,997 research outputs found

    The Administration of the Federal Courts

    Get PDF

    The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like

    Get PDF
    With molecular simulation for water and a tunable hydrophobic substrate, we apply the instantaneous interface construction [A. P. Willard and D. Chandler, J. Phys. Chem. B, 114, 1954 (2010)] to examine the similarity between a water-vapor interface and a water-hydrophobic surface interface. The intrinsic interface refers to molecular structure in terms of distances from the instantaneous interface. We show that attractive interactions between a hydrophobic surface and water affect capillary wave fluctuations of the instantaneous liquid interface, but these attractive interactions have essentially no effect on the intrinsic interface. Further, the intrinsic interface of liquid water and a hydrophobic substrate differs little from that of water and its vapor.The same is not true, we show, for an interface between water and a hydrophilic substrate. In that case, strong directional substrate-water interactions disrupt the liquid-vapor-like interfacial hydrogen bonding network.Comment: 6 pages, 5 figure

    Thermodynamics of Coarse Grained Models of Super-Cooled Liquids

    Full text link
    In recent papers, we have argued that kinetically constrained coarse grained models can be applied to understand dynamic properties of glass forming materials, and we have used this approach in various applications that appear to validate this view. In one such paper [J.P. Garrahan and D. Chandler, Proc. Nat. Acad. Sci. USA 100, 9710 (2003)], among other things we argued that this approach also explains why the heat capacity discontinuity at the glass transition is generally larger for fragile materials than for strong materials. In the preceding article, Biroli, Bouchaud and Tarjus (BB&T) [cond-mat/0412024] have objected to our explanation on this point, arguing that the class of models we apply is inconsistent with both the absolute size and temperature dependence of the experimental specific heat. Their argument, however, neglects parameters associated with the coarse graining. Accounting for these parameters, we show here that our treatment of dynamics is not inconsistent with heat capacity discontinuities.Comment: 5 pages, 2 figures. Revised version to appear in J. Chem. Phy

    Pursuit on a Graph Using Partial Information

    Full text link
    The optimal control of a "blind" pursuer searching for an evader moving on a road network and heading at a known speed toward a set of goal vertices is considered. To aid the "blind" pursuer, certain roads in the network have been instrumented with Unattended Ground Sensors (UGSs) that detect the evader's passage. When the pursuer arrives at an instrumented node, the UGS therein informs the pursuer if and when the evader visited the node. The pursuer's motion is not restricted to the road network. In addition, the pursuer can choose to wait/loiter for an arbitrary time at any UGS location/node. At time 0, the evader passes by an entry node on his way towards one of the exit nodes. The pursuer also arrives at this entry node after some delay and is thus informed about the presence of the intruder/evader in the network, whereupon the chase is on - the pursuer is tasked with capturing the evader. Because the pursuer is "blind", capture entails the pursuer and evader being collocated at an UGS location. If this happens, the UGS is triggered and this information is instantaneously relayed to the pursuer, thereby enabling capture. On the other hand, if the evader reaches one of the exit nodes without being captured, he is deemed to have escaped. We provide an algorithm that computes the maximum initial delay at the entry node for which capture is guaranteed. The algorithm also returns the corresponding optimal pursuit policy

    A simple solvable energy landscape model that shows a thermodynamic phase transition and a glass transition

    Full text link
    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy landscape models. Here a model is provided in which two key ingredients are considered based in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable and stable states. This allows to understand cooling trends due to rigidity considerations in chalcogenide glasses.Comment: 4 pages (letter), 2 figure
    • …
    corecore