54 research outputs found

    Population Pharmacokinetic Modeling of Dolutegravir to Optimize Pediatric Dosing in HIV-1-Infected Infants, Children, and Adolescents

    Get PDF
    Background and Objective: HIV treatment options remain limited in children. Dolutegravir is a potent and well-tolerated, once-daily HIV-1 integrase inhibitor recommended for HIV-1 infection in both adults and children down to 4 weeks of age. To support pediatric dosing of dolutegravir in children, we used a population pharmacokinetic model with dolutegravir data from the P1093 and ODYSSEY clinical trials. The relationship between dolutegravir exposure and selected safety endpoints was also evaluated. // Methods: A population pharmacokinetic model was developed with data from P1093 and ODYSSEY to characterize the pharmacokinetics and associated variability and to evaluate the impact of pharmacokinetic covariates. The final population pharmacokinetic model simulated exposures across weight bands, doses, and formulations that were compared with established adult reference data. Exploratory exposure–safety analyses evaluated the relationship between dolutegravir pharmacokinetic parameters and selected clinical laboratory parameters and adverse events. // Results: A total of N = 239 participants were included, baseline age ranged from 0.1 to 17.5 years, weight ranged from 3.9 to 91 kg, 50% were male, and 80% were black. The final population pharmacokinetic model was a one-compartment model with first-order absorption and elimination, enabling predictions of dolutegravir concentrations in the pediatric population across weight bands and doses/formulations. The predicted geometric mean trough concentration was comparable to the adult value following a 50-mg daily dose of dolutegravir for all weight bands at recommended doses. Body weight, age, and formulation were significant predictors of dolutegravir pharmacokinetics in pediatrics. Additionally, during an exploratory exposure–safety analysis, no correlation was found between dolutegravir exposure and selected safety endpoints or adverse events. // Conclusions: The dolutegravir dosing in children ≥ 4 weeks of age on an age/weight-band basis provides comparable exposures to those historically observed in adults. Observed pharmacokinetic variability was higher in this pediatric population and no additional safety concerns were observed. These results support the weight-banded dosing of dolutegravir in pediatric participants currently recommended by the World Health Organization

    Anti-thrombotic efficacy of S007-867: Pre-clinical evaluation in experimental models of thrombosis in vivo and in vitro.

    Get PDF
    Pharmacological inhibition of platelet collagen interaction is a promising therapeutic strategy to treat intra-vascular thrombosis. S007-867 is a novel synthetic inhibitor of collagen-induced platelet aggregation. It has shown better antithrombotic protection than aspirin and clopidogrel with minimal bleeding tendency in mice. The present study is aimed to systematically investigate the antithrombotic efficacy of S007-867 in comparison to aspirin and clopidogrel in vivo and to delineate its mechanism of action in vitro. Aspirin, clopidogrel, and S007-867 significantly reduced thrombus weight in arterio-venous (AV) shunt model in rats. In mice, following ferric chloride induced thrombosis in either carotid or mesenteric artery; S007-867 significantly prolonged the vessel occlusion time (1.2-fold) and maintained a sustained blood flow velocity for >30 min. Comparatively, clopidogrel showed significant prolongation in TTO (1.3-fold) while aspirin remained ineffective. Both S007-867 and aspirin did not alter bleeding time in either kidney or spleen injury models, and thus maintained hemostasis, while clopidogrel showed significant increase in spleen bleeding time (1.7-fold). The coagulation parameters namely thrombin time, prothrombin time or activated partial thromboplastin time remained unaffected even at high concentration of S007-867 (300 µM), thus implying its antithrombotic effect to be primarily platelet mediated. S007-867 significantly inhibited collagen-mediated platelet adhesion and aggregation in mice ex-vivo. Moreover, when blood was perfused over a highly thrombogenic combination of collagen mimicking peptides like CRP-GFOGER-VWF-III, S007-867 significantly reduced total thrombus volume or ZV50 (53.4 ± 5.7%). Mechanistically, S007-867 (10-300 μM) inhibited collagen-induced ATP release, thromboxane A2 (TxA2) generation, intra-platelet [Ca+2] flux and global tyrosine phosphorylation including PLCγ2. Collectively the present study highlights that S007-867 is a novel synthetic inhibitor of collagen induced platelet activation, that effectively maintains blood flow velocity and delays vascular occlusion. It inhibits thrombogenesis without compromising hemostasis. Therefore, S007-867 may be further developed for the treatment of thrombotic disorders in clinical settings

    Challenges Associated with the Quantification of Tear Fluids

    No full text

    Human Pharmacokinetics Prediction

    No full text
    corecore