20 research outputs found
The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2
Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
Significant improvement in crow's feet after treatment with Jet-M and a mixed solution of copper-GHK, oligo-hyaluronic acid, rhodiolar extract, tranexamic acid, and beta-glucan (GHR formulation)
Jet-M (Tav-Tech Ltd., Israel) is an instrument for skin resurfacing. When it sprays microdroplets of solution or shoots air on the skin, exfoliation and stretching of superficial layers can occur. Thus, it will increase percutaneous absorption of vitamins and other cosmetic agents. A cosmetic preparation containing copper-glycyl-L-histidyl-L-lysine, oligo-hyaluronic acid, rhodiolar extract, tranexamic acid, and beta-glucan was used with Jet-M in one patient. Anesthesia was not administered and there was no pain during the treatment. A male aged 59 years was treated once a week for 12 weeks. In the clinical photographs, wrinkles around the treated eye were greatly decreased. Skin biopsies were taken from treated and untreated areas. Hematoxylin and eosin and Masson's trichrome staining showed increased collagen production in the upper dermis. On the other hand, collagen IV production was slightly increased. Fibrillin-1 and procollagen type 1 were greatly increased and tropoelastin was also increased. There was no adverse effect during and after treatment.N
Nanometer-Scale Phase Transformation Determines Threshold and Memory Switching Mechanism
Creation of nanometer-scale conductive filaments in resistive switching devices makes them appealing for advanced electrical applications. While in situ electrical probing transmission electron microscopy promotes fundamental investigations of how the conductive filament comes into existence, it does not provide proof-of-principle observations for the filament growth. Here, using advanced microscopy techniques, electrical, 3D compositional, and structural information of the switching-induced conductive filament are described. It is found that during in situ probing microscopy of a Ag/TiO2/Pt device showing both memory-and threshold-switching characteristics, a crystalline Ag-doped TiO2 forms at vacant sites on the device surface and acts as the conductive filament. More importantly, change in filament morphology varying with applied compliance currents determines the underlying switching mechanisms that govern either memory or threshold response. When focusing more on threshold switching features, it is demonstrated that the structural disappearance of the filament arises at the end of the constricted region and leads to the spontaneous phase transformation from crystalline conductive state into an initial amorphous insulator. Use of the proposed method enables a new pathway for observing nanosized features in a variety of devices at the atomic scale in three dimensions.118sciescopu
Analysis of High-Concentration PM2.5 Episodes during Winter 2019-2020 in Seoul, Korea
PM2.5 is a WHO-designated first-class carcinogen and coping with high-concentration situations with high human risk is becoming more important. In particular, Korea has a high concentration of PM2.5 in winter due to its geographical characteristics, which can be largely divided into foreign inflows and domestic atmospheric stability. To determine this, wind patterns and air pressure data were analyzed representatively and episodes about high concentration phenomena were classified. In this study, high-concentration PM2.5 episodes, where the daily average PM2.5 concentration in Seoul exceeded 35 μg/m3 between October 2019 to March 2020, were analyzed case-by-case. The criteria for the separation of consecutive episodes were established. Then, the designated episodes were classified into four categories based on cause: atmospheric stagnation, combination of causes, penetration from abroad, and accumulation. To identify the causes of the episodes, wind direction, wind speed data, wind roses, and air quality forecast modeling data obtained from “Air Korea” were studied. Fifteen episodes were identified and analyzed and each were given a classification type. Furthermore, the phenomenon of high-concentration episodes was summarized after detailed individual analysis of the episodes. As a result of case analysis, just before there was an inflow from abroad due to strong wind speed, a characteristic of low PM2.5 concentration of air quality as a kind of cleaning effect could be found. In addition, alarm-level PM2.5 concentrations of 75 μg/m3 or higher were often made by external inflow. This will contribute towards identifying the main causes of high PM2.5 concentration episodes in Korea when it is applied over a longer time period
Pathogen- and NaCl-Induced Expression of the SCaM-4 Promoter Is Mediated in Part by a GT-1 Box That Interacts with a GT-1-Like Transcription Factor
The Ca(2+)-binding protein calmodulin mediates cellular Ca(2+) signals in response to a wide array of stimuli in higher eukaryotes. Plants express numerous CaM isoforms. Transcription of one soybean (Glycine max) CaM isoform, SCaM-4, is dramatically induced within 30 min of pathogen or NaCl stresses. To characterize the cis-acting element(s) of this gene, we isolated an approximately 2-kb promoter sequence of the gene. Deletion analysis of the promoter revealed that a 130-bp region located between nucleotide positions −858 and −728 is required for the stressors to induce expression of SCaM-4. A hexameric DNA sequence within this region, GAAAAA (GT-1 cis-element), was identified as a core cis-acting element for the induction of the SCaM-4 gene. The GT-1 cis-element interacts with an Arabidopsis GT-1-like transcription factor, AtGT-3b, in vitro and in a yeast selection system. Transcription of AtGT-3b is also rapidly induced within 30 min after pathogen and NaCl treatment. These results suggest that an interaction between a GT-1 cis-element and a GT-1-like transcription factor plays a role in pathogen- and salt-induced SCaM-4 gene expression in both soybean and Arabidopsis
Ultrasensitive artificial synapse based on conjugated polyelectrolyte
Emulating essential synaptic working principles using a single electronic device has been an important research field in recent years. However, achieving sensitivity and energy consumption comparable to biological synapses in these electronic devices is still a difficult challenge. Here, we report the fabrication of conjugated polyelectrolyte (CPE)-based artificial synapse, which emulates important synaptic functions such as paired-pulse facilitation (PPF), spike-timing dependent plasticity (STDP) and spiking rate dependent plasticity (SRDP). The device exhibits superior sensitivity to external stimuli andlow-energy consumption. Ultrahigh sensitivity and low-energy consumption are key requirements for building up brain-inspired artificial systems and efficient electronicbiological interface. The excellent synaptic performance originated from (i) a hybrid working mechanism that ensured the realization of both short-term and long-term plasticity in the same device, and (ii) the mobile-ion rich CPE thin film that mediate migration of abundant ions analogous to a synaptic cleft. Development of this type of artificial synapse is both scientifically and technologically important for construction of ultrasensitive highly-energy efficient and soft neuromorphic electronics.
PLC??1 in dopamine neurons critically regulates striatal dopamine release via VMAT2 and synapsin III
Dopamine neurons are essential for voluntary movement, reward learning, and motivation, and their dysfunction is closely linked to various psychological and neurodegenerative diseases. Hence, understanding the detailed signaling mechanisms that functionally modulate dopamine neurons is crucial for the development of better therapeutic strategies against dopamine-related disorders. Phospholipase Cγ1 (PLCγ1) is a key enzyme in intracellular signaling that regulates diverse neuronal functions in the brain. It was proposed that PLCγ1 is implicated in the development of dopaminergic neurons, while the physiological function of PLCγ1 remains to be determined. In this study, we investigated the physiological role of PLCγ1, one of the key effector enzymes in intracellular signaling, in regulating dopaminergic function in vivo. We found that cell type-specific deletion of PLCγ1 does not adversely affect the development and cellular morphology of midbrain dopamine neurons but does facilitate dopamine release from dopaminergic axon terminals in the striatum. The enhancement of dopamine release was accompanied by increased colocalization of vesicular monoamine transporter 2 (VMAT2) at dopaminergic axon terminals. Notably, dopamine neuron-specific knockout of PLCγ1 also led to heightened expression and colocalization of synapsin III, which controls the trafficking of synaptic vesicles. Furthermore, the knockdown of VMAT2 and synapsin III in dopamine neurons resulted in a significant attenuation of dopamine release, while this attenuation was less severe in PLCγ1 cKO mice. Our findings suggest that PLCγ1 in dopamine neurons could critically modulate dopamine release at axon terminals by directly or indirectly interacting with synaptic machinery, including VMAT2 and synapsin III. © 2023, The Author(s).11Nsciescopuskc