866 research outputs found
Geodesic motions in extraordinary string geometry
The geodesic properties of the extraordinary vacuum string solution in (4+1)
dimensions are analyzed by using Hamilton-Jacobi method. The geodesic motions
show distinct properties from those of the static one. Especially, any freely
falling particle can not arrive at the horizon or singularity. There exist
stable null circular orbits and bouncing timelike and null geodesics. To get
into the horizon {or singularity}, a particle need to follow a non-geodesic
trajectory. We also analyze the orbit precession to show that the precession
angle has distinct features for each geometry such as naked singularity, black
string, and wormhole.Comment: 15 pages, 11 figure
Relativistic Mass Ejecta from Phase-transition-induced Collapse of Neutron Stars
We study the dynamical evolution of a phase-transition-induced collapse
neutron star to a hybrid star, which consists of a mixture of hadronic matter
and strange quark matter. The collapse is triggered by a sudden change of
equation of state, which result in a large amplitude stellar oscillation. The
evolution of the system is simulated by using a 3D Newtonian hydrodynamic code
with a high resolution shock capture scheme. We find that both the temperature
and the density at the neutrinosphere are oscillating with acoustic frequency.
However, they are nearly 180 out of phase. Consequently, extremely
intense, pulsating neutrino/antineutrino fluxes will be emitted periodically.
Since the energy and density of neutrinos at the peaks of the pulsating fluxes
are much higher than the non-oscillating case, the electron/positron pair
creation rate can be enhanced dramatically. Some mass layers on the stellar
surface can be ejected by absorbing energy of neutrinos and pairs. These mass
ejecta can be further accelerated to relativistic speeds by absorbing
electron/positron pairs, created by the neutrino and antineutrino annihilation
outside the stellar surface. The possible connection between this process and
the cosmological Gamma-ray Bursts is discussed.Comment: 40 pages, 11 figures, accepted for publication in JCA
Dynamics of Non-adiabatic Charged Cylindrical Gravitational Collapse
This paper is devoted to study the dynamics of gravitational collapse in the
Misner and Sharp formalism. We take non-viscous heat conducting charged
anisotropic fluid as a collapsing matter with cylindrical symmetry. The
dynamical equations are derived and coupled with the transport equation for
heat flux obtained from the Mller-Israel-Stewart causal thermodynamic
theory. We discuss the role of anisotropy, electric charge and radial heat flux
over the dynamics of the collapse with the help of coupled equation.Comment: 15 pages, accepted for publication in Astrophys. Space Sc
Space-time inhomogeneity, anisotropy and gravitational collapse
We investigate the evolution of non-adiabatic collapse of a shear-free
spherically symmetric stellar configuration with anisotropic stresses
accompanied with radial heat flux. The collapse begins from a curvature
singularity with infinite mass and size on an inhomogeneous space-time
background. The collapse is found to proceed without formation of an even
horizon to singularity when the collapsing configuration radiates all its mass
energy. The impact of inhomogeneity on various parameters of the collapsing
stellar configuration is examined in some specific space-time backgrounds.Comment: To appear in Gen. Relativ. Gra
Anisotropic dark energy stars
A model of compact object coupled to inhomogeneous anisotropic dark energy is
studied. It is assumed a variable dark energy that suffers a phase transition
at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff
equations are integrated to know the structure of these objects. The anisotropy
is concentrated on a thin shell where the phase transition takes place, while
the rest of the star remains isotropic. The family of solutions obtained
depends on the coupling parameter between the dark energy and the fermion
matter. The solutions share several features in common with the gravastar
model. There is a critical coupling parameter that gives non-singular black
hole solutions. The mass-radius relations are studied as well as the internal
structure of the compact objects. The hydrodynamic stability of the models is
analyzed using a standard test from the mass-radius relation. For each
permissible value of the coupling parameter there is a maximum mass, so the
existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in
Astrophysics & Space Scienc
Electrochemical capacitance of a leaky nano-capacitor
We report a detailed theoretical investigation on electrochemical capacitance
of a nanoscale capacitor where there is a DC coupling between the two
conductors. For this ``leaky'' quantum capacitor, we have derived general
analytic expressions of the linear and second order nonlinear electrochemical
capacitance within a first principles quantum theory in the discrete potential
approximation. Linear and nonlinear capacitance coefficients are also derived
in a self-consistent manner without the latter approximation and the
self-consistent analysis is suitable for numerical calculations. At linear
order, the full quantum formula improves the semiclassical analysis in the
tunneling regime. At nonlinear order which has not been studied before for
leaky capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge
show interesting behavior. Our theory allows the investigation of crossover of
capacitance from a full quantum to classical regimes as the distance between
the two conductors is changed
Effects of Large CP violating phases on g_{\m}-2 in MSSM
Effects of CP violation on the supersymmetric electro-weak correction to the
anomalous magnetic moment of the muon are investigated with the most general
allowed set of CP violating phases in MSSM. The analysis includes contributions
from the chargino and the neutralino exchanges to the muon anomaly. The
supersymmetric contributions depend only on specific combinations of CP phases.
The independent set of such phases is classified. We analyse the effects of the
phases under the EDM constraints and show that large CP violating phases can
drastically affect the magnitude of the supersymmetric electro-weak
contribution to and may even affect its overall sign.Comment: 26 pages Latex file including 4 figure
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
The HyperCP experiment (Fermilab E871) was designed to search for rare
phenomena in the decays of charged strange particles, in particular CP
violation in and hyperon decays with a sensitivity of
. Intense charged secondary beams were produced by 800 GeV/c protons
and momentum-selected by a magnetic channel. Decay products were detected in a
large-acceptance, high-rate magnetic spectrometer using multiwire proportional
chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection
system. Nearly identical acceptances and efficiencies for hyperons and
antihyperons decaying within an evacuated volume were achieved by reversing the
polarities of the channel and spectrometer magnets. A high-rate
data-acquisition system enabled 231 billion events to be recorded in twelve
months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX,
submitted to Nucl. Instrum. Meth.
On the energy of charged black holes in generalized dilaton-axion gravity
In this paper we calculate the energy distribution of some charged black
holes in generalized dilaton-axion gravity. The solutions correspond to charged
black holes arising in a Kalb-Ramond-dilaton background and some existing
non-rotating black hole solutions are recovered in special cases. We focus our
study to asymptotically flat and asymptotically non-flat types of solutions and
resort for this purpose to the M{\o}ller prescription. Various aspects of
energy are also analyzed.Comment: LaTe
- …