31,240 research outputs found

    Observational constraints on a unified dark matter and dark energy model based on generalized Chaplygin gas

    Full text link
    We study a generalized version of Chaplygin gas as unified model of dark matter and dark energy. Using realistic theoretical models and the currently available observational data from the age of the universe, the expansion history based on the type Ia supernovae, the matter power spectrum, the cosmic microwave background radiation anisotropy power spectra, and the perturbation growth factor we put the unified model under observational test. As the model has only two free parameters in the flat Friedmann background [Λ\LambdaCDM (cold dark matter) model has only one free parameter] we show that the model is already tightly constrained by currently available observations. The only parameter space extremely close to the Λ\LambdaCDM model is allowed in this unified model.Comment: 7 pages, 9 figure

    Multireference Correlation in Long Molecules with the Quadratic Scaling Density Matrix Renormalization Group

    Get PDF
    We have devised and implemented a local ab initio Density Matrix Renormalization Group (DMRG) algorithm to describe multireference nondynamic correlations in large systems. For long molecules that are extended in one of their spatial dimensions, this method allows us to obtain an exact characterisation of correlation, in the given basis, with a cost that scales only quadratically with the size of the system. The reduced scaling is achieved solely through integral screening and without the construction of correlation domains. We demonstrate the scaling, convergence, and robustness of the algorithm in polyenes and hydrogen chains. We converge to exact correlation energies (with 1-10 microhartree precision) in all cases and correlate up to 100 electrons in 100 active orbitals. We further use our algorithm to obtain exact energies for the metal-insulator transition in hydrogen chains and compare and contrast our results with those from conventional quantum chemical methods.Comment: 14 pages, 12 figures, tciLaTeX, aip-BibTeX styl
    • …
    corecore