We have devised and implemented a local ab initio Density Matrix
Renormalization Group (DMRG) algorithm to describe multireference nondynamic
correlations in large systems. For long molecules that are extended in one of
their spatial dimensions, this method allows us to obtain an exact
characterisation of correlation, in the given basis, with a cost that scales
only quadratically with the size of the system. The reduced scaling is achieved
solely through integral screening and without the construction of correlation
domains. We demonstrate the scaling, convergence, and robustness of the
algorithm in polyenes and hydrogen chains. We converge to exact correlation
energies (with 1-10 microhartree precision) in all cases and correlate up to
100 electrons in 100 active orbitals. We further use our algorithm to obtain
exact energies for the metal-insulator transition in hydrogen chains and
compare and contrast our results with those from conventional quantum chemical
methods.Comment: 14 pages, 12 figures, tciLaTeX, aip-BibTeX styl