33,324 research outputs found

    Histidine is the axial ligand to cytochrome alpha 3 in cytochrome c oxidase

    Get PDF
    The nitric oxide-bound complexes of reduced yeast cytochrome c oxidase incorporated with [1,3-15N2]histidine have been investigated by EPR spectroscopy. The results of this study have allowed the unambiguous identification of histidine as the endogenous axial ligand to cytochrome alpha 3

    Spectroscopic characterization of the oxo-transfer reaction from a bis(µ-oxo)dicopper(III) complex to triphenylphosphine

    Get PDF
    The oxygen-atom transfer reaction from the bis(µ-oxo)dicopper(III) complex [CuIII2(µ-O)2(L)2]2+1, where L =N,N,N,N -tetraethylethylenediamine, to PPh3 has been studied by UV-vis, EPR, 1H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh3, giving OPPh3 and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments (18O2) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh3 was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh3) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen

    Activation barrier scaling and crossover for noise-induced switching in a micromechanical parametric oscillator

    Full text link
    We explore fluctuation-induced switching in a parametrically-driven micromechanical torsional oscillator. The oscillator possesses one, two or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.Comment: 5 pages, 5 figure

    Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies

    Get PDF
    The addition of NO to oxidized cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) causes the appearance of a high-spin heme electron paramagnetic resonance (EPR) signal due to cytochrome a3. This suggests that NO coordinates to Cu{a3}+2 and breaks the antiferromagnetic couple by forming a cytochrome a3+3-Cu{a3}+2-NO complex. The intensity of the high-spin cytochrome a3 signal depends on the method of preparation of the enzyme and maximally accounts for 58% of one heme. The effect of N3- on the cytochrome a3+3-Cu{a3}+2-NO complex is to reduce cytochrome a3 to the ferrous state, and this is followed by formation of a new complex that exhibits EPR signals characteristic of a triplet species. On the basis of optical and EPR results, a NO bridge between cytochrome a3+2 and Cu{a3}+2 is proposed-i.e., cytochrome a3+2-NO-Cu{a3}+2. The half-field transition observed at g = 4.34 in the EPR spectrum of this triplet species exhibits resolved copper hyperfine splittings with |A{}| = 0.020 cm-1, indicating that the Cu{a3}+2 in the cytochrome a3+2-NO-Cu{a3}+2 complex is similar to a type 2 copper site

    Poisson noise induced switching in driven micromechanical resonators

    Full text link
    We study Poisson-noise induced switching between coexisting vibrational states in driven nonlinear micromechanical resonators. In contrast to Gaussian noise induced switching, the measured logarithm of the switching rate is proportional not to the reciprocal noise intensity, but to its logarithm, for fixed pulse area. We also find that the switching rate logarithm varies as a square root of the distance to the bifurcation point, instead of the conventional scaling with exponent 3/2.Comment: accepted by PR

    Piezoelectric copolymer hydrophones for ultrasonic field characterization

    Get PDF
    Hydrophones to be used in the characterization of medical ultrasonic transducers have been fabricated using a new polyvinylidene fluoride/trifluoroethylene (VF2/VF3) copolymer. The copolymer has an advantage over VF2 in that it does not require prestretching before poling. Thin copolymer films can be cast from solution and then poled using the corona discharge method. As there is a need for small‐diameter hydrophones to provide good spatial resolution in measuring highly focused ultrasonic beams, hydrophones with diameter as small as 0.1 mm have been made. Both needle‐type and line hydrophones have been tested and their performance reported. In the case of line hydrophones, the output signal is proportional to the line integral of the acoustic pressure and a computer tomographic technique has been used to reconstruct the beam profiles

    Measurables of CPCP Violation in BdDCP0KSB_d\to D^0_{CP}K_S at a BB-meson Factory

    Full text link
    In the context of the standard electroweak model, we emphasize that BdDCP0KSB_d\rightarrow D^0_{CP}K_S (DCP0D^0_{CP} denotes a CPCP eigenstate of D0D^0 or Dˉ0\bar{D}^0) can compete with Bdπ+πB_d\rightarrow \pi^+\pi^- in studying CPCP violation and probing the Cabibbo-Kobayashi-Maskawa unitarity triangle. We discuss the measurables of direct and indirect CPCP asymmetries in Bd0B^0_d vs Bˉd0DCP0KS\bar{B}^0_d\rightarrow D^0_{CP}K_S under the circumstance of an asymmetric BB-meson factory running on the Υ(4S)\Upsilon(4S) resonance, and show that both the weak and strong phases are experimentally determinable even in the presence of unknown final-state interactions.Comment: 6 Postscript pages, accepted for publication in IL Nuovo Cimento A as a "Note Brevi

    Supernarrow spectral peaks near a kinetic phase transition in a driven, nonlinear micromechanical oscillator

    Full text link
    We measure the spectral densities of fluctuations of an underdamped nonlinear micromechanical oscillator. By applying a sufficiently large periodic excitation, two stable dynamical states are obtained within a particular range of driving frequency. White noise is injected into the excitation, allowing the system to overcome the activation barrier and switch between the two states. While the oscillator predominately resides in one of the two states for most excitation frequencies, a narrow range of frequencies exist where the occupations of the two states are approximately equal. At these frequencies, the oscillator undergoes a kinetic phase transition that resembles the phase transition of thermal equilibrium systems. We observe a supernarrow peak in the power spectral densities of fluctuations of the oscillator. This peak is centered at the excitation frequency and arises as a result of noise-induced transitions between the two dynamical states.Comment: 4 pages, 4 figure

    Dynamic Set Intersection

    Full text link
    Consider the problem of maintaining a family FF of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given S,SFS,S'\in F, report every member of SSS\cap S' in any order. We show that in the word RAM model, where ww is the word size, given a cap dd on the maximum size of any set, we can support set intersection queries in O(dw/log2w)O(\frac{d}{w/\log^2 w}) expected time, and updates in O(logw)O(\log w) expected time. Using this algorithm we can list all tt triangles of a graph G=(V,E)G=(V,E) in O(m+mαw/log2w+t)O(m+\frac{m\alpha}{w/\log^2 w} +t) expected time, where m=Em=|E| and α\alpha is the arboricity of GG. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in O(mα)O(m \alpha) time. We provide an incremental data structure on FF that supports intersection {\em witness} queries, where we only need to find {\em one} eSSe\in S\cap S'. Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected time, where N=SFSN=\sum_{S\in F} |S|. Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using MM words of space, each update costs O(MlogN)O(\sqrt {M \log N}) expected time, each reporting query costs O(NlogNMop+1)O(\frac{N\sqrt{\log N}}{\sqrt M}\sqrt{op+1}) expected time where opop is the size of the output, and each witness query costs O(NlogNM+logN)O(\frac{N\sqrt{\log N}}{\sqrt M} + \log N) expected time.Comment: Accepted to WADS 201
    corecore