67,218 research outputs found

    Integration of task level planning and diagnosis for an intelligent robot

    Get PDF
    A satellite floating space is diagnosed with a telerobot attached performing maintenance or replacement tasks. This research included three objectives. The first objective was to generate intelligent path planning for a robot to move around a satellite. The second objective was to diagnose possible faulty scenarios in the satellite. The third objective included two tasks. The first task was to combine intelligent path planning with diagnosis. The second task was to build an interface between the combined intelligent system with Robosim. The ability of a robot to deal with unexpected scenarios is particularly important in space since the situation could be different from time to time so that the telerobot must be capable of detecting that the situation has changed and the necessity may exist to alter its behavior based on the new situation. The feature of allowing human-in-the-loop is also very important in space. In some extreme cases, the situation is beyond the capability of a robot so our research project allows the human to override the decision of a robot

    Scaling laws for molecular communication

    Full text link
    In this paper, we investigate information-theoretic scaling laws, independent from communication strategies, for point-to-point molecular communication, where it sends/receives information-encoded molecules between nanomachines. Since the Shannon capacity for this is still an open problem, we first derive an asymptotic order in a single coordinate, i.e., i) scaling time with constant number of molecules mm and ii) scaling molecules with constant time tt. For a single coordinate case, we show that the asymptotic scaling is logarithmic in either coordinate, i.e., Θ(logt)\Theta(\log t) and Θ(logm)\Theta(\log m), respectively. We also study asymptotic behavior of scaling in both time and molecules and show that, if molecules and time are proportional to each other, then the asymptotic scaling is linear, i.e., Θ(t)=Θ(m)\Theta(t)=\Theta(m).Comment: Accepted for publication in the 2014 IEEE International Symposium on Information Theor

    A simulation model for wind energy storage systems. Volume 1: Technical report

    Get PDF
    A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers

    The International Volatility of Growth

    Get PDF
    Growth in the world economy is not shared equally among all countries, with some growing faster, some slower and some not at all. The cross-country distribution of growth is a useful tool for analysing the inequality of growth. The appropriately-weighted first moment of this distribution is world growth, while the second measures cross-country volatility. This paper introduces a methodology to examine the cross-country distribution of growth, and the components of its volatility. Using data from the Penn World Table, we find countries within geographic regions are seeing a harmonisation of growth, but between regions there is increasing dispersion.Growth, Cross-Country Distribution, Volatility

    A model of the near-earth plasma environment and application to the ISEE-A and -B orbit

    Get PDF
    A model of the near-earth environment to obtain a best estimate of the average flux of protons and electrons in the energy range from 0.1 to 100 keV for the International Sun-Earth Explorer (ISEE)-A and -B spacecraft. The possible radiation damage to the thermal coating on these spinning spacecraft is also studied. Applications of the model to other high-altitude satellites can be obtained with the appropriate orbit averaging. This study is the first attempt to synthesize an overall quantitative environment of low-energy particles for high altitude spacecraft, using data from in situ measurements
    corecore