96 research outputs found

    Subsequent tropical cyclogenesis in the South China Sea induced by the pre-existing tropical cyclone over the western North Pacific: a case study

    Get PDF
    Mechanisms of tropical cyclogenesis have been studied for decades. A new one in the South China Sea, namely, PTC-STC is proposed. A subsequent tropical cyclone (STC) in the South China Sea can be induced by a pre-existing tropical cyclone (PTC) over the western North Pacific. The observations, reanalysis, and numerical sensitivity experiments suggest that the terrain of the Philippines (especially Luzon) is geographically essential to the tropical cyclogenesis and development of STC, whereas the intensity and track of PTC are conditionally decisive. If the terrain of the Philippines is replaced by sea, no STC forms. The steep mountain range of Luzon provides static blocking effect that can 1) enhance the upward motion; 2) accumulate warm moist air mass from the westerly and PTC; and 3) constrain the advection of vorticity from the PTC. Meanwhile, the northeasterly from the PTC climbs over the terrains, increases the diabatic heating, and warms the proximity in the leeside of the mountains. These processes show that the interactions between the PTC and the terrain of the Philippines could provide favorable dynamic and thermodynamic conditions for the tropical cyclogenesis of STC in the low-to-mid troposphere of the South China Sea. Whereas, if the PTC is too strong, it could move into the South China Sea, suppressing the standalone favorable conditions for the tropical cyclogenesis of STC in the South China Sea

    Rapid intensification of Typhoon Hato (2017) over shallow water

    Get PDF
    Β© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pun, I., Chan, J. C. L., Lin, I., Chan, K. T. E., Price, J. F., Ko, D. S., Lien, C., Wu, Y., & Huang, H. Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11(13), (2019): 3709, doi:10.3390/su11133709.On 23 August, 2017, Typhoon Hato rapidly intensified by 10 kt within 3 h just prior to landfall in the city of Macau along the South China coast. Hato’s surface winds in excess of 50 m sβˆ’1 devastated the city, causing unprecedented damage and social impact. This study reveals that anomalously warm ocean conditions in the nearshore shallow water (depth < 30 m) likely played a key role in Hato’s fast intensification. In particular, cooling of the sea surface temperature (SST) generated by Hato at the critical landfall point was estimated to be only 0.1–0.5 Β°C. The results from both a simple ocean mixing scheme and full dynamical ocean model indicate that SST cooling was minimized in the shallow coastal waters due to a lack of cool water at depth. Given the nearly invariant SST in the coastal waters, we estimate a large amount of heat flux, i.e., 1.9k W mβˆ’2, during the landfall period. Experiments indicate that in the absence of shallow bathymetry, and thus, if nominal cool water had been available for vertical mixing, the SST cooling would have been enhanced from 0.1 Β°C to 1.4 Β°C, and sea to air heat flux reduced by about a quarter. Numerical simulations with an atmospheric model suggest that the intensity of Hato was very sensitive to air-sea heat flux in the coastal region, indicating the critical importance of coastal ocean hydrography.The work of I.-F.P. is supported by Taiwan’s Ministry of Science and Technology Grant MOST 107-2111-M-008-001-MY3. The work of J.C.L.C. is supported by the Research Grants Council of Hong Kong Grant E-CityU101/16. The work of I.-I.L. is supported by Taiwan’s Ministry of Science and Technology (MOST 106-2111-M-002-011-MY3, MOST 108-2111-M-002-014-MY2). The work of K.T.F.C. is jointly supported by the National Natural Science Foundation of China (41775097), and the National Natural Science Foundation of China and Macau Science and Technology Development Joint Fund (NSFC-FDCT), China and Macau (41861164027)

    A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli

    Get PDF
    Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers

    A bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer

    Get PDF
    Β© 2014 Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: For advanced pancreatic cancer, many regimens have been compared with gemcitabine (G) as the standard arm in randomized controlled trials. Few regimens have been directly compared with each other in randomized controlled trials and the relative efficacy and safety among them remains unclear

    PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The Cu^I sponge and its function

    Get PDF
    In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward Cu^I ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB_(33–414) and PmoB_(55–414), each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0β€―mM Cu^(II), it behaves like M. capsulatus (Bath) cultured under high copper stresswith abundant membrane accumulation and high CuI content. The recombinantPmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-rayabsorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are Cu^I proteins. All the PmoB proteins show evidence of a β€œdicopper site” according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB_(33–414) mutant. Reaction of the dicopper site with dioxygenproduces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit

    PARP-1 Val762Ala Polymorphism Is Associated with Risk of Cervical Carcinoma

    Get PDF
    PARP-1 is a nuclear enzyme that plays an important role in DNA repair, recombination, proliferation and the genome stability. The PARP-1 Val762Ala polymorphism has been associated with increased risk of developing cancers of the prostate, esophagus and lung. The aim of this study was to determine whether the PARP-1 Val762Ala polymorphism is associated with the risk of cervical carcinoma. MA-PCR was used to genotype the PARP-1 Val762Ala polymorphism in 539 women with cervical carcinoma, 480 women with CIN and 800 controls. The genotyping method was confirmed by the DNA sequencing analysis. The PARP-1 Val762Ala polymorphism was not associated with the risk of CIN. However, women carrying the PARP-1 Ala762Ala genotype were significantly susceptible to cervical carcinoma (OR: 2.70, 95% CI: 1.47–3.70), and the similar results were also found in squamous cell carcinoma (OR: 2.56, 95% CI: 1.47–3.70). In HPV positive population, the PARP-1 Ala762Ala genotype was also associated with increased risk of cervical carcinoma (OR: 5.56, 95% CI: 2.08–14.3). Our results indicate that the PARP-1 Ala762Ala genotype increases the risk of cervical carcinoma

    PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The Cu^I sponge and its function

    Get PDF
    In this study, we describe efforts to clarify the role of the copper cofactors associated with subunit B (PmoB) of the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) (M. capsulatus). This subunit exhibits strong affinity toward Cu^I ions. To elucidate the high copper affinity of the subunit, the full-length PmoB, and the N-terminal truncated mutants PmoB_(33–414) and PmoB_(55–414), each fused to the maltose-binding protein (MBP), are cloned and over-expressed into Escherichia coli (E. coli) K12 TB1 cells. The Y374F, Y374S and M300L mutants of these protein constructs are also studied. When this E. coli is grown with the pmoB gene in 1.0β€―mM Cu^(II), it behaves like M. capsulatus (Bath) cultured under high copper stresswith abundant membrane accumulation and high CuI content. The recombinantPmoB proteins are verified by Western blotting of antibodies directed against the MBP sub-domain in each of the copper-enriched PmoB proteins. Cu K-edge X-rayabsorption near edge spectroscopy (XANES) of the copper ions confirms that all the PmoB recombinants are Cu^I proteins. All the PmoB proteins show evidence of a β€œdicopper site” according to analysis of the Cu extended X-ray absorption edge fine structure (EXAFS) of the membranes. No specific activities toward methane and propene oxidation are observed with the recombinant membrane-bound PmoB proteins. However, significant production of hydrogen peroxide is observed in the case of the PmoB_(33–414) mutant. Reaction of the dicopper site with dioxygenproduces hydrogen peroxide and leads to oxidation of the CuI ions residing in the C-terminal sub-domain of the PmoB subunit

    Constitutively Nuclear FOXO3a Localization Predicts Poor Survival and Promotes Akt Phosphorylation in Breast Cancer

    Get PDF
    Background: The PI3K-Akt signal pathway plays a key role in tumorigenesis and the development of drug-resistance. Cytotoxic chemotherapy resistance is linked to limited therapeutic options and poor prognosis. Methodology/Principal Findings: Examination of FOXO3a and phosphorylated-Akt (P-Akt) expression in breast cancer tissue microarrays showed nuclear FOXO3a was associated with lymph node positivity (p = 0.052), poor prognosis (p = 0.014), and P-Akt expression in invasive ductal carcinoma. Using tamoxifen and doxorubicin-sensitive and -resistant breast cancer cell lines as models, we found that doxorubicin- but not tamoxifen-resistance is associated with nuclear accumulation of FOXO3a, consistent with the finding that sustained nuclear FOXO3a is associated with poor prognosis. We also established that doxorubicin treatment induces proliferation arrest and FOXO3a nuclear relocation in sensitive breast cancer cells. Induction of FOXO3a activity in doxorubicin-sensitive MCF-7 cells was sufficient to promote Akt phosphorylation and arrest cell proliferation. Conversely, knockdown of endogenous FOXO3a expression reduced PI3K/Akt activity. Using MDA-MB-231 cells, in which FOXO3a activity can be induced by 4-hydroxytamoxifen, we showed that FOXO3a induction up-regulates PI3K-Akt activity and enhanced doxorubicin resistance. However FOXO3a induction has little effect on cell proliferation, indicating that FOXO3a or its downstream activity is deregulated in the cytotoxic drug resistant breast cancer cells. Thus, our results suggest that sustained FOXO3a activation can enhance hyperactivation of the PI3K/Akt pathway. Conclusions/Significance: Together these data suggest that lymph node metastasis and poor survival in invasive ductal breast carcinoma are linked to an uncoupling of the Akt-FOXO3a signaling axis. In these breast cancers activated Akt fails to inactivate and re-localize FOXO3a to the cytoplasm, and nuclear-targeted FOXO3a does not induce cell death or cell cycle arrest. As such, sustained nuclear FOXO3a expression in breast cancer may culminate in cancer progression and the development of an aggressive phenotype similar to that observed in cytotoxic chemotherapy resistant breast cancer cell models. Β© 2010 Chen et al.published_or_final_versio

    RNA-Seq Analyses Generate Comprehensive Transcriptomic Landscape and Reveal Complex Transcript Patterns in Hepatocellular Carcinoma

    Get PDF
    RNA-seq is a powerful tool for comprehensive characterization of whole transcriptome at both gene and exon levels and with a unique ability of identifying novel splicing variants. To date, RNA-seq analysis of HBV-related hepatocellular carcinoma (HCC) has not been reported. In this study, we performed transcriptome analyses for 10 matched pairs of cancer and non-cancerous tissues from HCC patients on Solexa/Illumina GAII platform. On average, about 21.6 million sequencing reads and 10.6 million aligned reads were obtained for samples sequenced on each lane, which was able to identify >50% of all the annotated genes for each sample. Furthermore, we identified 1,378 significantly differently expressed genes (DEGs) and 24, 338 differentially expressed exons (DEEs). Comprehensive function analyses indicated that cell growth-related, metabolism-related and immune-related pathways were most significantly enriched by DEGs, pointing to a complex mechanism for HCC carcinogenesis. Positional gene enrichment analysis showed that DEGs were most significantly enriched at chromosome 8q21.3–24.3. The most interesting findings were from the analysis at exon levels where we characterized three major patterns of expression changes between gene and exon levels, implying a much complex landscape of transcript-specific differential expressions in HCC. Finally, we identified a novel highly up-regulated exon-exon junction in ATAD2 gene in HCC tissues. Overall, to our best knowledge, our study represents the most comprehensive characterization of HBV-related HCC transcriptome including exon level expression changes and novel splicing variants, which illustrated the power of RNA-seq and provided important clues for understanding the molecular mechanisms of HCC pathogenesis at system-wide levels
    • …
    corecore