21 research outputs found

    Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors

    Get PDF
    Background: Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results: We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion: In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. © 2008 Mo et al; licensee BioMed Central Ltd.published_or_final_versio

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Evaluating the emotion regulation of positive mood states among people with bipolar disorder using hierarchical clustering

    No full text
    202303 bcwwVersion of RecordSelf-fundedPublishe

    Added sugar, sugar-sweetened beverages, and artificially sweetened beverages and risk of cardiovascular disease: findings from the women’s health initiative and a network meta-analysis of prospective studies

    No full text
    202307 bcchVersion of RecordOthersthe Canadian Institutes of Health (CIHR) Postdoctoral Fellowship;the National Natural Science Foundation of China (81673156, 82073528, and 81302417);the Projects of RISA CD69 and Start-up Fund for RAPs under the Strategic Hiring Scheme BD8H;the National Institutes of Health (NIH) (grants R01DK125403, R01ES031391, and R01ES029082)Publishe

    Rapid analysis of fatty acid-binding proteins with immunosensors and immunotests for early monitoring of tissue injury

    No full text
    Fatty acid-binding protein (FABP) holds promise for early detection of tissue injury. This small protein (15 kD) appears earlier in the blood than large proteins after cell damage. Combined its characteristics of high concentration tissue contents and low normal plasma values provide the possibility of a rapid rise above the respective reference values, and thus an early indication of the appearance of tissue injury. A general review was presented on the current status of different types of FABP for the detection of tissue injury in patients with myocardial injury, brain injury and also in athletes or horses with skeletal muscle injury. To take full advantage of the characteristics of the early marker FABP, rapid analysis is a crucial parameter. In this review, an overview of the development of immunoassay for the quantification of FABP in buffer, plasma or whole blood was outlined. The characteristics of different FABP immunosensors and immunotests were described. The feasibility of these immunoassays to be used in routine clinical practice and in emergency case was also discussed. Nowadays, the improved automated immunoassays (e.g. a microparticle-enhanced turbidimetric immunoassay), less time-consuming bedside immunosensors and immunotests (e.g. a one-step FABP lateral flow immunotest), are the main advance technology in point-of-care testing. With these point-of-care tests, the application of FABP as an early tissue injury marker has a great potential for many clinical purposes. (c) 2004 Elsevier B.V. All rights reserved
    corecore