44,880 research outputs found

    Signal quality measures for unsupervised blood pressure measurement

    Get PDF
    Accurate systolic and diastolic pressure estimation, using automated blood pressure measurement, is difficult to achieve when the transduced signals are contaminated with noise or interference, such as movement artifact. This study presents an algorithm for automated signal quality assessment in blood pressure measurement by determining the feasibility of accurately detecting systolic and diastolic pressures when corrupted with various levels of movement artifact. The performance of the proposed algorithm is compared to a manually annotated reference scoring (RS). Based on visual representations and audible playback of Korotkoff sounds, the creation of the RS involved two experts identifying sections of the recorded sounds and annotating sections of noise contamination. The experts determined the systolic and diastolic pressure in 100 recorded Korotkoff sound recordings, using a simultaneous electrocardiograph as a reference signal. The recorded Korotkoff sounds were acquired from 25 healthy subjects (16 men and 9 women) with a total of four measurements per subject. Two of these measurements contained purposely induced noise artifact caused by subject movement. Morphological changes in the cuff pressure signal and the width of the Korotkoff pulse were extracted features which were believed to be correlated with the noise presence in the recorded Korotkoff sounds. Verification of reliable Korotkoff pulses was also performed using extracted features from the oscillometric waveform as recorded from the inflatable cuff. The time between an identified noise section and a verified Korotkoff pulse was the key feature used to determine the validity of possible systolic and diastolic pressures in noise contaminated Korotkoff sounds. The performance of the algorithm was assessed based on the ability to: verify if a signal was contaminated with any noise; the accuracy, sensitivity and specificity of this noise classification, and the systolic and diastolic pressure differences between the result obtained from the algorithm and the RS. 90% of the actual noise contaminated signals were correctly identified, and a sample-wise accuracy, sensitivity and specificity of 97.0%, 80.61% and 98.16%, respectively, were obtained from 100 pooled signals. The mean systolic and diastolic differences were 0.37 ± 3.31 and 3.10 ± 5.46 mmHg, respectively, when the artifact detection algorithm was utilized, with the algorithm correctly determined if the signal was clean enough to attempt an estimation of systolic or diastolic pressures in 93% of blood pressure measurements

    Energetic Components of Cooperative Protein Folding

    Full text link
    A new lattice protein model with a four-helix bundle ground state is analyzed by a parameter-space Monte Carlo histogram technique to evaluate the effects of an extensive variety of model potentials on folding thermodynamics. Cooperative helical formation and contact energies based on a 5-letter alphabet are found to be insufficient to satisfy calorimetric and other experimental criteria for two-state folding. Such proteinlike behaviors are predicted, however, by models with polypeptide-like local conformational restrictions and environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press

    Field Strength Formulation of SU(2) Yang-Mills Theory in the Maximal Abelian Gauge: Perturbation Theory

    Get PDF
    We present a reformulation of SU(2) Yang-Mills theory in the maximal Abelian gauge, where the non-Abelian gauge field components are exactly integrated out at the expense of a new Abelian tensor field. The latter can be treated in a semiclassical approximation and the corresponding saddle point equation is derived. Besides the non-trivial solutions, which are presumably related to non-perturbative interactions for the Abelian gauge field, the equation of motion for the tensor fields allows for a trivial solution as well. We show that the semiclassical expansion around this trivial solution is equivalent to the standard perturbation theory. In particular, we calculate the one-loop β\beta-function for the running coupling constant in this approach and reproduce the standard result.Comment: 29 pages LaTeX, 6 postscript figures. Version to be published in Int. J. Mod. Phys.

    Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse

    Full text link
    The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ\Gamma has smaller value for such a fluid in cylindrically symmetric than isotropic sphere

    Knuthian Drawings of Series-Parallel Flowcharts

    Full text link
    Inspired by a classic paper by Knuth, we revisit the problem of drawing flowcharts of loop-free algorithms, that is, degree-three series-parallel digraphs. Our drawing algorithms show that it is possible to produce Knuthian drawings of degree-three series-parallel digraphs with good aspect ratios and small numbers of edge bends.Comment: Full versio

    Black string and velocity frame dragging

    Full text link
    We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted zz-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z−z-coordinate if it is not compact. However, in spacetime with the compact z−z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity is dependent on rr and the momentum parameter along the z−z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.Comment: 8 pages, no figure, some correction

    A Model Behind the Standard Model

    Get PDF
    In spite of its many successes, the Standard Model makes many empirical assumptions in the Higgs and fermion sectors for which a deeper theoretical basis is sought. Starting from the usual gauge symmetry u(1)×su(2)×su(3)u(1) \times su(2) \times su(3) plus the 3 assumptions: (A) scalar fields as vielbeins in internal symmetry space \cite{framevec}, (B) the ``confinement picture'' of symmetry breaking \cite{tHooft,Banovici}, (C) generations as ``dual'' to colour \cite{genmixdsm}, we are led to a scheme which offers: (I) a geometrical significance to scalar fields, (II) a theoretical criterion on what scalar fields are to be introduced, (III) a partial explanation of why su(2)su(2) appears broken while su(3)su(3) confines, (IV) baryon-lepton number (B - L) conservation, (V) the standard electroweak structure, (VI) a 3-valued generation index for leptons and quarks, and (VII) a dynamical system with all the essential features of an earlier phenomenological model \cite{genmixdsm} which gave a good description of the known mass and mixing patterns of quarks and leptons including neutrino oscillations. There are other implications the consistency of which with experiment, however, has not yet been systematically explored. A possible outcome is a whole new branch of particle spectroscopy from su(2)su(2) confinement, potentially as rich in details as that of hadrons from colour confinement, which will be accessible to experiment at high energy.Comment: 66 pages, added new material on phenomenology, and some new reference

    Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm

    Full text link
    We report on ellipsometric measurements of the refractive indices of LAB-PPO, Nd-doped LAB-PPO and EJ-301 scintillators to the nearest +/-0.005, in the wavelength range 210-1000 nm.Comment: 7 pages, 4 figure
    • …
    corecore