28 research outputs found

    Technology Transfers and the Clean Development Mechanism in a North-South General Equilibrium Model

    Full text link
    This paper analyzes the potential welfare gains of introducing a technology transfer from Annex I to non-Annex I in order to mitigate greenhouse gas emissions. Our analysis is based on a numerical general equilibrium model for a world economy comprising two regions, North (Annex I) and South (non-Annex I). As our model allows for labor mobility between the formal and informal sectors in the South, we are also able to capture additional aspects of how the transfer influences the Southern economy. In a cooperative equilibrium, a technology transfer from the North to the South is clearly desirable from the perspective of a global social planner, since the welfare gain for the South outweighs the welfare loss for the North. However, if the regions do not cooperate, then the incentives to introduce the technology transfer appear to be relatively weak from the perspective of the North; at least if we allow for Southern abatement in the pre-transfer Nash equilibrium. Finally, by adding the emission reductions associated with the Kyoto agreement to an otherwise uncontrolled market economy, the technology transfer leads to higher welfare in both regions

    Oncogene GAEC1

    No full text

    The Anticancer Effect of a Novel Quinoline Derivative 91b1 through Downregulation of Lumican

    No full text
    Quinoline derivatives have been reported to possess a wide range of pharmaceutical activities. Our group previously synthesized a series of quinoline compounds, in which compound 91b1 showed a significant anticancer effect. The purpose of this study was to evaluate the anticancer activity of compound 91b1 in vitro and in vivo, and screen out its regulated target. A series of cancer cell lines and nontumor cell lines were treated with compound 91b1 by MTS cytotoxicity assay and cell-cycle assay. In vivo anticancer activity was evaluated by a xenografted model on nude mice. Target prediction of 91b1 was assessed by microarray assay and confirmed by pancancer analysis. Relative expression of the target gene Lumican was measured by qRT-PCR. 91b1 significantly reduced tumor size in the nude mice xenograft model. Lumican was downregulated after 91b1 treatment. Lumican was proven to increase tumorigenesis in vivo, as well as cancer cell migration, invasion, and proliferation in vitro. The results of this study suggest that the anticancer activity of compound 91b1 probably works through downregulating the gene Lumican.ISSN:1422-006

    Expression of Insulin-Like Growth Factor Binding Protein-5 (IGFBP5) Reverses Cisplatin-Resistance in Esophageal Carcinoma

    No full text
    Cisplatin (CDDP) is one of the front-line chemotherapeutic drugs used in the treatment of esophageal squamous cell carcinoma (ESCC). Occurrence of resistance to CDDP has become one of the main challenges in cancer therapy. In this study, the gene expression profile of CDDP-resistant ESCC cells was investigated and molecular approaches were explored in an attempt to reverse the CDDP resistance. A CDDP-resistant SLMT-1/CDDP1R cell line was established from SLMT-1 cells by subculturing in the medium containing an increasing concentration of CDDP (0.1–1μg/mL). Mitochondrial (MTS) cytotoxicity assay, cell proliferation assay and cell morphology were used to assess the acquisition of cisplatin-resistance. The most differentially expressed gene in SLMT-1/CDDP1R cells was identified by cDNA microarray analysis compared with the parental SLMT-1 cells and validated by quantitative real-time polymerase chain reaction (qPCR). Association between expression of the most differentially expressed target gene to cisplatin-resistance was verified by RNA interference. An attempt to reversecisplatin-resistance phenotypes was made by using the vector expressing the most downregulated target gene in the CDDP-resistant cells. A CDDP-resistant ESCC cell line, SLMT-1/CDDP1R, was established with 2.8-fold increase CDDP-resistance (MTS50 = 25.8 μg/mL) compared with the parental SLMT-1 cells. cDNA microarray analysis revealed that IGFBP5 showed the highest level of downregulation in SLMT-1/CDDP1R cells compared with the parental SLMT-1 cells. Suppression of IGFBP5 mediated by IGFBP5-targeting siRNA in parental SLMT-1 cells confirmed that IGFBP5 suppression in ESCC cells would induce CDDP-resistance. More importantly, upregulation of IGFBP5 using IGFBP5 expression vector reduced cisplatin-resistance in SLMT-1/CDDP1R cells by 41%. Thus, our results demonstrated that IGFBP5 suppression is one of the mechanisms for the acquisition of cisplatin-resistance in ESCC cells. Cisplatin-resistance phenotype can be reversed by increasing the expression level of IGFBP5. The overall findings of this study thus offered a new direction for reversing the CDDP resistance in ESCC and possibly in other cancer types with further investigations in future

    Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents

    No full text
    This letter describes the preparation of quinoline derivatives and their cytotoxic potentials toward human carcinoma cell lines. Among the selected compounds, 8-hydroxy-2-quinolinecarbaldehyde (3) showed the best in vitro cytotoxicity against the human cancer cell lines, including MDA231, T-47D, Hs578t, SaoS2, K562, SKHep1 (with a MTS50 range of 12.5–25 μg/mL) and Hep3B (with a MTS50 range of 6.25±0.034 μg/mL). The in vivo antitumor activity of compound 3 on subcutenaous Hep3B hepatocellular carcinoma xenograft in athymic nude mice was then studied. The results showed that the dose of 10 mg/kg/day of compound 3 with intraperitoneal injection for 9 days totally abolished the growth of the xenograft tumor of Hep3B with no histological damage on vital organs as compared with the control. The experimental results suggested that compound 3 has a good potential as an antitumor agent

    Synthesis of 8‑Hydroxyquinoline Derivatives as Novel Antitumor Agents

    No full text
    This letter describes the preparation of quinoline derivatives and their cytotoxic potentials toward human carcinoma cell lines. Among the selected compounds, 8-hydroxy-2-quinolinecarbaldehyde (<b>3</b>) showed the best <i>in vitro</i> cytotoxicity against the human cancer cell lines, including MDA231, T-47D, Hs578t, SaoS2, K562, SKHep1 (with a MTS<sub>50</sub> range of 12.5–25 μg/mL) and Hep3B (with a MTS<sub>50</sub> range of 6.25±0.034 μg/mL). The <i>in vivo</i> antitumor activity of compound <b>3</b> on subcutenaous Hep3B hepatocellular carcinoma xenograft in athymic nude mice was then studied. The results showed that the dose of 10 mg/kg/day of compound <b>3</b> with intraperitoneal injection for 9 days totally abolished the growth of the xenograft tumor of Hep3B with no histological damage on vital organs as compared with the control. The experimental results suggested that compound <b>3</b> has a good potential as an antitumor agent

    A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening

    No full text
    Leung and colleagues established a biobank of patient-derived gastric cancer organoids that encompasses a diverse array of subtypes and maintained long-term similarity to the original tumors. They used the organoids to perform large-scale drug screening that identified potential target drugs and could guide patient drug selection
    corecore