60 research outputs found

    An ion ring in a linear multipole trap for optical frequency metrology

    Full text link
    A ring crystal of ions trapped in a linear multipole trap is studied as a basis for an optical frequency standard. The equilibrium conditions and cooling possibilities are discussed through an analytical model and molecular dynamics simulations. A configuration which reduces the frequency sensitivity to the fluctuations of the number of trapped ions is proposed. The systematic shifts for the electric quadrupole transition of calcium ions are evaluated for this ring configuration. This study shows that a ring of 10 or 20 ions allows to reach a short term stability better than for a single ion without introducing limiting long term fluctuations

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 1014^{-14} at one second can be reached with a precision limited by power broadening to 101110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Glory Oscillations in the Index of Refraction for Matter-Waves

    Get PDF
    We have measured the index of refraction for sodium de Broglie waves in gases of Ar, Kr, Xe, and nitrogen over a wide range of sodium velocities. We observe glory oscillations -- a velocity-dependent oscillation in the forward scattering amplitude. An atom interferometer was used to observe glory oscillations in the phase shift caused by the collision, which are larger than glory oscillations observed in the cross section. The glory oscillations depend sensitively on the shape of the interatomic potential, allowing us to discriminate among various predictions for these potentials, none of which completely agrees with our measurements

    Linear Paul trap design for an optical clock with Coulomb crystals

    Full text link
    We report on the design of a segmented linear Paul trap for optical clock applications using trapped ion Coulomb crystals. For an optical clock with an improved short-term stability and a fractional frequency uncertainty of 10^-18, we propose 115In+ ions sympathetically cooled by 172Yb+. We discuss the systematic frequency shifts of such a frequency standard. In particular, we elaborate on high precision calculations of the electric radiofrequency field of the ion trap using the finite element method. These calculations are used to find a scalable design with minimized excess micromotion of the ions at a level at which the corresponding second- order Doppler shift contributes less than 10^-18 to the relative uncertainty of the frequency standard

    Planck's scale dissipative effects in atom interferometry

    Get PDF
    Atom interferometers can be used to study phenomena leading to irreversibility and dissipation, induced by the dynamics of fundamental objects (strings and branes) at a large mass scale. Using an effective, but physically consistent description in terms of a master equation of Lindblad form, the modifications of the interferometric pattern induced by the new phenomena are analyzed in detail. We find that present experimental devices can in principle provide stringent bounds on the new effects.Comment: 12 pages, plain-Te

    Antarctic sea ice trophic status

    Get PDF
    This study focuses on analyses and validation of 1 month forecasts (OMFs) of weak Indian monsoons based on 10 member ensemble hindcasts (retrospective forecasts) of the NCEP Climate Forecast System (CFS) model for the period 1981–2008. The weak monsoon episodes chosen for the analysis correspond to summer monsoon months which were characterized by significant deficits in the All-India monthly rainfall of − 20% of the climatological normal. Examination of the CFS-OMFs shows poor skill of the model in capturing the observed rainfall and circulation anomalies during weak monsoons. The present analysis suggests that deficiencies in realistically capturing the ocean-atmosphere coupling in the tropical Indian Ocean (IO) introduces biases in simulating sea surface temperature and rainfall anomalies in the equatorial region, which in turn affects the monsoon precipitation forecasts over the sub-continent. In particular, the mean thermocline in the near-equatorial IO is found to be practically flat in the CFS model, so that the near-equatorial anomalies in the model are not strong enough to weaken the summer monsoon circulation and reduce the monsoon precipitation over India. By examining a 100 year free run of the CFS model, it is seen that moderate monsoon-droughts simulated by the model have weak teleconnections with the equatorial IO dynamics. On the other hand, intense monsoon-droughts in the CFS-model are found be remarkably linked with the equatorial IO anomalies. It is suggested that improving the slope of the equatorial IO thermocline and allowing for more realistic IO-monsoon coupling in the CFS-model would be an important step for improving the skill of extended-range monsoon forecasts

    Tunable isolated attosecond x-ray pulses with Gigawatt peak power from a free-electron laser

    Get PDF
    The quantum mechanical motion of electrons in molecules and solids occurs on the sub-femtosecond timescale. Consequently, the study of ultrafast electronic phenomena requires thegeneration of laser pulses shorter than 1 fs and of sufficient intensity to interact with their targetwith high probability. Probing these dynamics with atomic-site specificity requires the extensionof sub-femtosecond pulses to the soft X-ray spectral region. Here we report the generation of iso-lated soft X-ray attosecond pulses with an X-ray free-electron laser. Our source has a pulse energythat is a million times larger than any other source of isolated attosecond pulses in the soft X-rayspectral region, with a peak power exceeding 100 GW. This unique combination of high intensity,high photon energy and short pulse duration enables the investigation of electron dynamics withX-ray non-linear spectroscopy and single-particle imaging, unlocking a path towards a new era ofattosecond science
    corecore