3,463 research outputs found

    Giant Electron-hole Charging Energy Asymmetry in Ultra-short Carbon Nanotubes

    Get PDF
    Making full usage of bipolar transport in single-wall carbon nanotube (SWCNT) transistors could permit the development of two-in-one quantum devices with ultra-short channels. We report on clean ∼\sim10 to 100 nm long suspended SWCNT transistors which display a large electron-hole transport asymmetry. The devices consist of naked SWCNT channels contacted with sections of SWCNT-under-annealed-gold. The annealed gold acts as an n-doping top gate which creates nm-sharp barriers at the junctions between the contacts and naked channel. These tunnel barriers define a single quantum dot (QD) whose charging energies to add an electron or a hole are vastly different (e−he-h charging energy asymmetry). We parameterize the e−he-h transport asymmetry by the ratio of the hole and electron charging energies ηe−h\eta_{e-h}. We show that this asymmetry is maximized for short channels and small band gap SWCNTs. In a small band gap SWCNT device, we demonstrate the fabrication of a two-in-one quantum device acting as a QD for holes, and a much longer quantum bus for electrons. In a 14 nm long channel, ηe−h\eta_{e-h} reaches up to 2.6 for a device with a band gap of 270 meV. This strong e−he-h transport asymmetry survives even at room temperature

    Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial.

    Get PDF
    The objective of this clinical trial was to evaluate the effectiveness of zinc supplementation on diarrhea and average daily weight gain (ADG) in pre-weaned dairy calves. A total of 1,482 healthy Holstein heifer and bull calves from a large California dairy were enrolled at 24 to 48 hours of age until hutch exit at approximately 90 days of age. Calves were block-randomized by time to one of three treatments: 1) placebo, 2) zinc methionine (ZM), or 3) zinc sulfate (ZS) administered in milk once daily for 14 days. Serum total protein at enrollment and body weight at birth, treatment end, and hutch exit were measured. Fecal consistency was assessed daily for 28 days post-enrollment. For a random sample of 127 calves, serum zinc concentrations before and after treatment and a fecal antigen ELISA at diarrhea start and resolution for Escherichia coli K99, rotavirus, coronavirus, and Cryptosporidium parvum were performed. Linear regression showed that ZM-treated bull calves had 22 g increased ADG compared to placebo-treated bulls (P = 0.042). ZM-treated heifers had 9 g decreased ADG compared to placebo-treated heifers (P = 0.037), after adjusting for average birth weight. Sex-stratified models showed that high birth weight heifers treated with ZM gained more than placebo-treated heifers of the same birth weight, which suggests a dose-response effect rather than a true sex-specific effect of ZM on ADG. Cox regression showed that ZM and ZS-treated calves had a 14.7% (P = 0.015) and 13.9% (P = 0.022) reduced hazard of diarrhea, respectively, compared to placebo-treated calves. Calves supplemented for at least the first five days of diarrhea with ZM and ZS had a 21.4% (P = 0.027) and 13.0% (P = 0.040) increased hazard of cure from diarrhea, respectively, compared to placebo-treated calves. Logistic regression showed that the odds of microbiological cure at diarrhea resolution for rotavirus, C. parvum, or any single fecal pathogen was not different between treatment groups. Zinc supplementation delayed diarrhea and expedited diarrhea recovery in pre-weaned calves. Additionally, zinc improved weight gain differentially in bulls compared to heifers, indicating a research need for sex-specific dosing

    Thermal Equilibration of 176-Lu via K-Mixing

    Full text link
    In astrophysical environments, the long-lived (\T_1/2 = 37.6 Gy) ground state of 176-Lu can communicate with a short-lived (T_1/2 = 3.664 h) isomeric level through thermal excitations. Thus, the lifetime of 176-Lu in an astrophysical environment can be quite different than in the laboratory. We examine the possibility that the rate of equilibration can be enhanced via K-mixing of two levels near E_x = 725 keV and estimate the relevant gamma-decay rates. We use this result to illustrate the effect of K-mixing on the effective stellar half-life. We also present a network calculation that includes the equilibrating transitions allowed by K-mixing. Even a small amount of K-mixing will ensure that 176-Lu reaches at least a quasi-equilibrium during an s-process triggered by the 22-Ne neutron source.Comment: 9 pages, 6 figure
    • …
    corecore