12 research outputs found

    Benefits of Barley Grain in Animal and Human Diets

    Get PDF
    Barley (Hordeum vulgare L) is one of the major cereal grains grown in temperate countries and ranked globally as the fourth largest grain crop. Currently, it is produced in more than 100 countries around the world with a global production of approximatively 159 million tonnes and 51 million hectares in 2019. The production and value-added barley products impact breweries, food processors, feed mills, and livestock operations. Barley grain is used primarily as an energy and protein source in beef cattle diets and as a malt source for alcoholic beverages, especially in the beer industry. Also, barley is used in bread, soups, stews, and health products since the barley grain is rich in several health-boosting components. As such, barley is high in protein, fibre, vitamins and natural bioactive antioxidants such as phenolics and lipids. However the studies of bioactive and nutritional properties of barley and the utilization of the crop as a functional food in animal and human diet is still limited. The work herein provides a review covering world production, end-use and processing, nutritional attributes, and will advocate its potential as a functional food for animal and human health and its role in preventing some chronic diseases

    Climate Change Impacts on Rice Farming Systems in Northwestern Sri Lanka

    Get PDF
    Sri Lanka has achieved tremendous progress since 1950 in crop production and food availability. Yields grew at an impressive rate until leveling off in the mid-eighties. Sri Lanka's population is anticipated to grow in the coming decades, creating an ever-greater demand for food security on the household, sub-district, regional, and national scales.The agricultural sector in Sri Lanka is vulnerable to climate shocks. An unusual succession of droughts and floods from 2008 to 2014 has led to both booms and busts in agricultural production, which were reflected in food prices. In both instances, the majority of farmers and consumers were adversely affected.At present the rice-farming systems are under stress due to inadequate returns for the farmers and difficulty in coping with shocks due to climate, pests, and diseases, and prices for produce. There are government price-support mechanisms, fertilizer-subsidy schemes, and crop insurance schemes, but the levels of the supports are modest and often do not effectively reach the farmers

    Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in Vitis vinifera Fruits of North America

    No full text
    Grapes (Vitis vinifera L.) are rich in bioactive molecules contributing to health benefits. Consumption of grapes is linked to reduced incidence of cardiovascular diseases. Studies on table grape cultivars are limited although much attention in research was focused on the wine industry. Bioactive effects of grapes as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. For example, resveratrol is a natural food ingredient present in grapes, with high antioxidant potential. Here we conducted an exploratory study to investigate bioactive molecules, antioxidant activity and the association between constitutive stilbene synthase (STS) gene expression and the resveratrol biosynthesis in selected table grape varieties in North America. The phenolic compounds, fatty acid composition and antioxidant activity of four grape varieties were compared. Red Globe variety was rich in unsaturated fatty acids as well as phenolic compounds such as caffeic acid, quercetin and resveratrol. Meanwhile, the constitutive expression of grape stilbene synthase gene was higher in Flame and Autumn Royal where resveratrol content of these cultivars was relatively low compared to the Red Globe variety. This study shows the potential links in grape antioxidant activity and resveratrol production, but more studies are necessary to show the association

    Air-Frying Is a Better Thermal Processing Choice for Improving Antioxidant Properties of <i>Brassica</i> Vegetables

    No full text
    Brassica vegetables have demonstrated many health benefits over the years due to their composition of phenolic, flavonoid, and glucosinolate contents. However, these bioactive molecules can be easily depleted during gastronomic operations. Therefore, a sustainable method that improves their phenolic content and antioxidant activity is required for both the processors and consumers. Thermal processing has been demonstrated as a method to improve the phenolic content and antioxidant status of Brassica vegetables. In the current study, four different thermal processing methods, including freeze-drying, sautéing, steaming, and air-frying, were employed for five different Brassica vegetables, including kale, broccoli sprouts, Brussels sprouts, red cabbage, and green cabbage. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities were assessed using radical scavenging activity (DPPH and ABTS•+), reducing power (FRAP), and the chelating ability of metal ions. Among the methods tested, air-frying at 160 °C for 10 min showed the highest TPC, TFC, and antioxidant activity of the Brassica vegetables, while sautéing showed the lowest. The steam treatments were preferred over the freeze-drying treatments. Within the vegetables tested, both kale and broccoli sprouts contained higher antioxidant properties in most of the employed processing treatments. The results also indicated that there is a strong correlation between the TPC, TFC, and antioxidant activity (p Brassica vegetables

    Comparative Analysis of Bioactive Phenolic Compounds and Fatty Acids in Seeds and Seedlings of Canadian Alfalfa, Sainfoin, and Fenugreek

    No full text
    The interest in under-utilized crops as a functional food for animals and humans has been increasing recently with advancing research and the need for crop improvement. Canadian forage crops including alfalfa (Medicago sativa L.) and fenugreek (Trigonella foenum-graecum L.) are marketed in various forms due to their traditionally known health benefits. Sainfoin (Onobrychis viciifolia Scop.) is another forage crop with potential health benefits containing beneficial nutraceuticals. In this study, we assessed selected bioactive phenolic compounds and fatty acids in seeds and seedlings of Canadian-grown alfalfa, sainfoin, and fenugreek. Various phenolic compounds were detected in all three forage crop seeds and seedlings. In general, Sainfoin seeds were high in phenolic compounds relative to that of alfalfa and fenugreek. Chlorogenic acid, epigallo catechin, and gallic acid were at high concentrations at 56.6, 86.8, and 64.7 µg.g−1, respectively, compared to other phenolic compounds in sainfoin seeds. The fatty acids content (%) was significantly affected by the seedling stage and crop type. Some of the bioactive compounds present in seeds were not detected in seedling stages. The comparative bioactive phenolic compounds and fatty acid assessments of these forage legumes could potentially be used as biomarkers for the selection and development of favorable cultivars for animal and human nutrition. In addition, these crops could be used for isolating these bioactive compounds, and thus increasing their agri-food value

    Evaluation of virus-induced gene silencing methods for forage legumes including alfalfa, sainfoin and fenugreek

    No full text
    Virus-induced gene silencing (VIGS) is a rapid reverse genetics tool that has been developed in a wide variety of plant species for assessing gene functions. However, while VIGS has been utilized successfully in the diploid model leguminous species Medicago truncatula (Gaertn.) (barrel medic), such a platform has yet to be established in forage legume crop species. Therefore, we evaluated the effectiveness of this method in forage legumes using a previously developed PEBV (pea early browning virus) system whereby a fragment of the pea (Pisum sativum L.) PHYTOENE DESATURASE (PDS) gene was transferred into a range of alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), and fenugreek (Trigonella foenum-graecum L.) cultivars using leaf infiltration and apical meristem injection. Barrel medic was used as a positive control. Gene silencing was observed after 10–15 d through the presence of a leaf bleaching phenotype, and was confirmed using quantitative real-time RT-PCR. Silencing of PDS was achieved in a selection of cultivars in all species assessed, with the highest silencing efficiency apparent in fenugreek. The introduction of a highly homologous gene fragment from a heterologous plant species to target endogenous genes for transient VIGS-based silencing in a range of species of interest represents a potentially useful strategy for the rapid functional characterization of candidate genes in forages.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Analyses of Fatty Acids, Proteins, Ascorbic Acid, Bioactive Phenolic Compounds and Antioxidant Activity of Canadian Barley Cultivars and Elite Germplasm

    No full text
    Barley (Hordeum vulgare L.) grain is rich in fiber and antioxidant phytochemicals, including fatty acids, proteins, phenolic compounds, vitamins, and minerals, that offer various health benefits. Research on identifying different barley genotypes based on their health attributes is very limited. In this study, we performed an analysis of fatty acids, proteins, ascorbic acid, phenolic compounds, and antioxidant activity of several Canadian barley cultivars and elite breeding lines. Linoleic acid (C18:2) was the predominant fatty acid present in the tested barley cultivars. The cultivar CDC Bold contained the highest amount of ascorbic acid, while the highest protein content was in CDC Mindon. An assessment of the free and bound phenolic compounds of barley grains showed quantitative changes among different genotypes of Canadian barley. Catechin is the most abundant molecule in free phenolics, while ferulic acid and para-coumeric acid are the most abundant in bound phenolics. Ferulic acid and vanillic acid were molecules detected in the soluble free fraction of all genotypes. Para-coumeric acid was detected only in genotypes such as CDC Copeland, CDC Bold, Lowe, and elite breeding Line 5 of both free and bound fractions of barley. Breeding Line 5 had the lowest antioxidant activity. An analysis of the above molecules and parameters of Canadian barley would help to uncover potential biomarkers in order to distinguish individual barley genotypes

    Characterization of bronze leaf disease in western Canadian aspen and poplar trees

    No full text
    Aspen and poplar trees are important horticultural plants grown in Canada for aesthetic, commercial woodlot and windbreak applications. Bronze leaf is a destructive disease in Populus spp. and is caused by the fungal pathogen Apioplagiostoma populi Barr. This pathogen is often difficult to isolate and confirm from infected plant tissues and has been mainly identified by disease symptoms and morphological characteristics of A. populi when fruiting bodies form on infected leaves or branches. Affected leaves and branches typically become necrotic and bronze in colour. Air-borne spores and nursery shipments containing infected plants play an important role in the efficient movement of the pathogen. In this study, bronze leaf disease samples from symptomatic trees in Canada were examined microscopically for A. populi perithecia and asci. Pathogen-specific genomic sequences were identified for the development of sensitive stringent diagnostics that indicated branches and petioles were the most effective tissues for detecting A. populi. Leaf samples from symptomatic trees were collected in Canada and examined for perithecia to microscopically characterize A. populi asci and ascospores. Disease associated DNA sequences of the internal transcribed spacer (ITS) 5.8S region of the nuclear ribosomal were isolated from perithecia and symptomatic tree samples. Morphological and molecular biological data from this study characterized the relationship and epidemiology of A. populi and enabled the development of rapid diagnostic methods that restrict the extent of further losses in amenity and commercial plantings of aspen and poplar.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Potential Associations among Bioactive Molecules, Antioxidant Activity and Resveratrol Production in <i>Vitis vinifera</i> Fruits of North America

    No full text
    Grapes (Vitis vinifera L.) are rich in bioactive molecules contributing to health benefits. Consumption of grapes is linked to reduced incidence of cardiovascular diseases. Studies on table grape cultivars are limited although much attention in research was focused on the wine industry. Bioactive effects of grapes as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. For example, resveratrol is a natural food ingredient present in grapes, with high antioxidant potential. Here we conducted an exploratory study to investigate bioactive molecules, antioxidant activity and the association between constitutive stilbene synthase (STS) gene expression and the resveratrol biosynthesis in selected table grape varieties in North America. The phenolic compounds, fatty acid composition and antioxidant activity of four grape varieties were compared. Red Globe variety was rich in unsaturated fatty acids as well as phenolic compounds such as caffeic acid, quercetin and resveratrol. Meanwhile, the constitutive expression of grape stilbene synthase gene was higher in Flame and Autumn Royal where resveratrol content of these cultivars was relatively low compared to the Red Globe variety. This study shows the potential links in grape antioxidant activity and resveratrol production, but more studies are necessary to show the association
    corecore