187 research outputs found
Nielsen-Olesen vortex in varying-alpha theories
We consider soliton solutions to Bekenstein's theory, for which the fine
structure constant is allowed to vary due to the
presence of a dielectric field pervading the vacuum. More specifically we
investigate the effects of a varying upon a complex scalar field with
a U(1) electromagnetic gauge symmetry subject to spontaneous symmetry breaking.
We find vortex solutions to this theory, similar to the Nielsen-Olesen vortex.
Near the vortex core the electric charge is typically much larger than far away
from the string, lending these strings a superconducting flavour. In general
the dielectric field coats the usual local string with a global string
envelope. We discuss the cosmological implications of networks of such strings,
with particular emphasis on their ability to generate inhomogeneous
recombination scenarios. We also consider the possibility of the dielectric
being a charged free field. Even though the vacuum of such a field is trivial,
we find that the dielectric arranges itself in the shape of a local string,
with a quantized magnetic flux at the core -- presumably borrowing these
topological features from the underlying Nielsen-Olesen vortex.Comment: 7 pages, 1 figur
WMAP Data and Recent Developments in Supersymmetric Dark Matter
A brief review is given of the recent developments in the analyses of
supersymmetric dark matter. Chief among these is the very accurate
determination of the amount of cold dark matter in the universe from analyses
using WMAP data. The implications of this data for the mSUGRA parameter space
are analyzed. It is shown that the data admits solutions on the hyperbolic
branch (HB) of the radiative breaking of the electroweak symmetry. A part of
the hyperbolic branch lies in the so called inversion region where the LSP
neutralino becomes essentially a pure Higgsino and degenerate with
the next to the lightest neutralino and the light chargino
. Thus some of the conventional signals for the observation of
supersymmetry at colliders (e.g., the missing energy signals) do not operate in
this region. On the other hand the inversion region contains a high degree of
degeneracy of , , leading to coannihilations
which allow for the satisfaction of the WMAP relic density constraints deep on
the hyperbolic branch. Further, an analysis of the neutralino-proton cross
sections in this region reveals that this region can still be accessible to
dark matter experiments in the future. Constraints from and from
are discussed. Future prospects are also discussed.Comment: 15 pages Latex. Invited talk at the IV International Conference on
Non-accelerator New Physics (NANP'03), Dubna, Russia, June 23-28, 200
Electroweak Supersymmetry around the Electroweak Scale
Inspired by the phenomenological constraints, LHC supersymmetry and Higgs
searches, dark matter search as well as string model building, we propose the
electroweak supersymmetry around the electroweak scale: the squarks and/or
gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are
within one TeV. The Higgsinos can be either heavy or light. We consider bino as
the dominant component of dark matter candidate, and the observed dark matter
relic density is achieved via the neutralino-stau coannihilations. Considering
the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that the
electroweak supersymmetry can be realized, and the gauge coupling unification
can be preserved. With two Scenarios, we study the viable parameter spaces that
satisfy all the current phenomenological constraints, and we present the
concrete benchmark points. Furthermore, we comment on the fine-tuning problem
and LHC searches.Comment: RevTex4, 28 pages, 8 figures, 8 tables, version to appear in EPJ
Cardiac troponin T is elevated and increases longitudinally in ALS patients.
Objective: To test whether high-sensitivity cardiac troponin T (hs-cTnT) could act as a diagnostic or prognostic biomarker in ALS, comparing hs-cTnT to neurofilament light (NfL). Methods: We performed a case-control study, including 150 ALS patients, 28 ALS mimics, and 108 healthy controls, and a follow-up study of the ALS patients, during 2014-2020 in Stockholm, Sweden. We compared concentrations of hs-cTnT in plasma and NfL in the cerebrospinal fluid between cases and controls. To evaluate the diagnostic performance, we calculated the area under the curve (AUC). Hazard ratios (HRs) were estimated from Cox models to assess associations between hs-cTnT and NfL at ALS diagnosis and risk of death. The longitudinal analysis measured changes of hs-cTnT and NfL since ALS diagnosis. Results: We noted higher levels of hs-cTnT in ALS patients (median: 16.5 ng/L) than in ALS mimics (11 ng/L) and healthy controls (6 ng/L). Both hs-cTnT and NfL could distinguish ALS patients from ALS mimics, with higher AUC noted for NfL (AUC 0.88; 95%CI 0.79-0.97). Disease progression correlated weakly with hs-cTnT (Pearson's r = 0.18, p = 0.04) and moderately with NfL (Pearson's r = 0.41, p < 0.001). Shorter survival was associated with higher levels of NfL at diagnosis (HR 1.08, 95%CI 1.04-1.11), but not hs-cTnT. hs-cTnT increased (12.61 ng/L per year, 95%CI 7.14-18.06) whereas NfL decreased longitudinally since ALS diagnosis. Conclusions: NfL is a stronger diagnostic and prognostic biomarker than hs-cTnT for ALS. However, hs-cTnT might constitute a disease progression biomarker as it increases longitudinally. The underlying causes for this increase need to be investigated
Realistic Standard Model Fermion Mass Relations in Generalized Minimal Supergravity (GmSUGRA)
Grand Unified Theories (GUTs) usually predict wrong Standard Model (SM)
fermion mass relation m_e/m_{\mu} = m_d/m_s toward low energies. To solve this
problem, we consider the Generalized Minimal Supergravity (GmSUGRA) models,
which are GUTs with gravity mediated supersymmetry breaking and higher
dimensional operators. Introducing non-renormalizable terms in the super- and
K\"ahler potentials, we can obtain the correct SM fermion mass relations in the
SU(5) model with GUT Higgs fields in the {\bf 24} and {\bf 75} representations,
and in the SO(10) model. In the latter case the gauge symmetry is broken down
to SU(3)_C X SU(2)_L X SU(2)_R X U(1)_{B-L}, to flipped SU(5)X U(1)_X, or to
SU(3)_C X SU(2)_L X U(1)_1 X U(1)_2. Especially, for the first time we generate
the realistic SM fermion mass relation in GUTs by considering the
high-dimensional operators in the K\"ahler potential.Comment: JHEP style, 29 pages, no figure,references adde
Identification of a non-competitive inhibitor of Plasmodium falciparum aspartate transcarbamoylase
Aspartate transcarbamoylase catalyzes the second step of de-novo pyrimidine biosynthesis. As malarial parasites lack pyrimidine salvage machinery and rely on de-novo production for growth and proliferation, this pathway is a target for drug discovery. Previously, an apo crystal structure of aspartate transcarbamoylase from Plasmodium falciparum (PfATC) in its T-state has been reported. Here we present crystal structures of PfATC in the liganded R-state as well as in complex with the novel inhibitor, 2,3-napthalenediol, identified by high-throughput screening. Our data shows that 2,3-napthalediol binds in close proximity to the active site, implying an allosteric mechanism of inhibition. Furthermore, we report biophysical characterization of 2,3-napthalenediol. These data provide a promising starting point for structure based drug design targeting PfATC and malarial de-novo pyrimidine biosynthesis
General Gauge and Anomaly Mediated Supersymmetry Breaking in Grand Unified Theories with Vector-Like Particles
In Grand Unified Theories (GUTs) from orbifold and various string
constructions the generic vector-like particles do not need to form complete
SU(5) or SO(10) representations. To realize them concretely, we present
orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be
broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R
gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like
particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass
can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry
Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated
Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general
gaugino mass relations and their indices, which are valid from the GUT scale to
the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X
U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the
deflected AMSB, we also define the new indices for the gaugino mass relations,
and calculate them as well. Using these gaugino mass relations and their
indices, we may probe the messenger fields at intermediate scale in the GMSB
and deflected AMSB, determine the supersymmetry breaking mediation mechanisms,
and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.Comment: RevTex4, 45 pages, 15 tables, version to appear in JHE
Lysobisphosphatidic acid controls endosomal cholesterol levels
Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC)
Supersymmetric Dark Matter and Yukawa Unification
An analysis of supersymmetric dark matter under the Yukawa unification
constraint is given. The analysis utilizes the recently discovered region of
the parameter space of models with gaugino mass nonuniversalities where large
negative supersymmetric corrections to the b quark mass appear to allow
unification for a positive sign consistent with the and constraints. In the present analysis we use the
revised theoretical determination of ()
in computing the difference which takes account of
a reevaluation of the light by light contribution which has a positive sign.
The analysis shows that the region of the parameter space with
nonuniversalities of the gaugino masses which allows for unification of Yukawa
couplings also contains regions which allow satisfaction of the relic density
constraint. Specifically we find that the lightest neutralino mass consistent
with the relic density constraint, unification for SU(5) and
unification for SO(10) in addition to other constraints lies in the region
below 80 GeV. An analysis of the maximum and the minimum neutralino-proton
scalar cross section for the allowed parameter space including the effect of a
new determination of the pion-nucleon sigma term is also given. It is found
that the full parameter space for this class of models can be explored in the
next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig
Twenty Years of SUGRA
A brief review is given of the developments of mSUGRA and its extensions
since the formulation of these models in 1982. Future directions and prospects
are also discussed.Comment: Invited talk at the International Conference BEYOND-2003, Schloss
Ringberg, Germany, June 10-14, 2003; 21 pages, Late
- …