591 research outputs found

    A Tolman-Bondi-Lemaitre Cell-Model for the Universe and Gravitational Collapse

    Get PDF
    A piecewise Tolman-Bondi-Lemaitre (TBL) cell-model for the universe incorporating local collapsing and expanding inhomogeneities is presented here. The cell-model is made up of TBL underdense and overdense spherical regions surrounded by an intermediate region of TBL shells embedded in an expanding universe. The cell-model generalizes the Friedmann as well as Einstein-Straus swiss-cheese models and presents a number of advantages over other models, and in particular the time evolution of the cosmological inhomogeneities is now incorporated within the scheme. Important problem of gravitational collapse of a massive dust cloud, such as a cluster of galaxies or even a massive star, in such a cosmological background is examined. It is shown that the collapsing local inhomogeneities in an expanding universe could result in either a black hole, or a naked singularity, depending on the nature of the set of initial data which consists of the matter distribution and the velocities of the collapsing shells in the cloud at the initial epoch from which the collapse commences.Comment: 14 pages, 3 figure

    A radiating dyon solution

    Full text link
    We give a non-static exact solution of the Einstein-Maxwell equations (with null fluid), which is a non-static magnetic charge generalization to the Bonnor-Vaidya solution and describes the gravitational and electromagnetic fields of a nonrotating massive radiating dyon. In addition, using the energy-momentum pseudotensors of Einstein and Landau and Lifshitz we obtain the energy, momentum, and power output of the radiating dyon and find that both prescriptions give the same result.Comment: 9 pages, LaTe

    Initial data and the end state of spherically symmetric gravitational collapse

    Get PDF
    Generalizing earlier results on the initial data and the final fate of dust collapse, we study here the relevance of the initial state of a spherically symmetric matter cloud towards determining its end state in the course of a continuing gravitational collapse. It is shown that given an arbitrary regular distribution of matter at the initial epoch, there always exists an evolution from this initial data which would result either in a black hole or a naked singularity depending on the allowed choice of free functions available in the solution. It follows that given any initial density and pressure profiles for the cloud, there is a non-zero measure set of configurations leading either to black holes or naked singularities, subject to the usual energy conditions ensuring the positivity of energy density. We also characterize here wide new families of black hole solutions resulting from spherically symmetric collapse without requiring the cosmic censorship assumption.Comment: Ordinary Tex file, 31 pages no figure

    Energy Distribution of a Stationary Beam of Light

    Full text link
    Aguirregabiria et al showed that Einstein, Landau and Lifshitz, Papapetrou, and Weinberg energy-momentum complexes coincide for all Kerr-Schild metric. Bringely used their general expression of the Kerr-Schild class and found energy and momentum densities for the Bonnor metric. We obtain these results without using Aguirregabiria et al results and verify that Bringley's results are correct. This also supports Aguirregabiria et al results as well as Cooperstock hypothesis. Further, we obtain the energy distribution of the space-time under consideration.Comment: Latex, no figures [Admin note: substantial overlap with gr-qc/9910015 and hep-th/0308070

    The Energy of Regular Black Hole in General Relativity Coupled to Nonlinear Electrodynamics

    Full text link
    According to the Einstein, Weinberg, and M{\o}ller energy-momentum complexes, we evaluate the energy distribution of the singularity-free solution of the Einstein field equations coupled to a suitable nonlinear electrodynamics suggested by Ay\'{o}n-Beato and Garc\'{i}a. The results show that the energy associated with the definitions of Einstein and Weinberg are the same, but M{\o}ller not. Using the power series expansion, we find out that the first two terms in the expression are the same as the energy distributions of the Reissner-Nordstr\"{o}m solution, and the third term could be used to survey the factualness between numerous solutions of the Einstein field eqautions coupled to a nonlinear electrodynamics.Comment: 11 page

    Gravitational Collapse and Cosmological Constant

    Get PDF
    We consider here the effects of a non-vanishing cosmological term on the final fate of a spherical inhomogeneous collapsing dust cloud. It is shown that depending on the nature of the initial data from which the collapse evolves, and for a positive value of the cosmological constant, we can have a globally regular evolution where a bounce develops within the cloud. We characterize precisely the initial data causing such a bounce in terms of the initial density and velocity profiles for the collapsing cloud. In the cases otherwise, the result of collapse is either formation of a black hole or a naked singularity resulting as the end state of collapse. We also show here that a positive cosmological term can cover a part of the singularity spectrum which is visible in the corresponding dust collapse models for the same initial data.Comment: 18 pages, no figure

    Spherical Universes with Anisotropic Pressure

    Get PDF
    Einstein's equations are solved for spherically symmetric universes composed of dust with tangential pressure provided by angular momentum, L(R), which differs from shell to shell. The metric is given in terms of the shell label, R, and the proper time, tau, experienced by the dust particles. The general solution contains four arbitrary functions of R - M(R), L(R), E(R) and r(0,R). The solution is described by quadratures, which are in general elliptic integrals. It provides a generalization of the Lemaitre-Tolman-Bondi solution. We present a discussion of the types of solution, and some examples. The relationship to Einstein clusters and the significance for gravitational collapse is also discussed.Comment: 24 pages, 11 figures, accepted for publication in Classical and Quantum Gravit

    Naked singularities and Seifert's conjecture

    Get PDF
    It is shown that for a general nonstatic spherically symmetric metric of the Kerr-Schild class several energy-momentum complexes give the same energy distribution as in the Penrose prescription, obtained by Tod. This result is useful for investigating the Seifert conjecture for naked singularities. The naked singularity forming in the Vaidya null dust collapse supports the Seifert conjecture. Further, an example and a counterexample to this conjecture are presented in the Einstein massless scalar theory.Comment: RevTex, no figures, new results included, published in Physical Review D 60, 104041 (1999
    corecore