59 research outputs found

    IFPA meeting 2016 workshop report I: Genomic communication, bioinformatics, trophoblast biology and transport systems

    Get PDF
    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2016 there were twelve themed workshops, four of which are summarized in this report. These workshops covered innovative technologies applied to new and traditional areas of placental research: 1) genomic communication; 2) bioinformatics; 3) trophoblast biology and pathology; 4) placental transport systems

    IFPA meeting 2018 workshop report II: Abnormally invasive placenta; inflammation and infection; preeclampsia; gestational trophoblastic disease and drug delivery

    Get PDF
    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2018 there were nine themed workshops, five of which are summarised in this report. These workshops discussed new perspectives and knowledge in the following areas of research: 1) preeclampsia; 2) abnormally invasive placenta; 3) placental infection; 4) gestational trophoblastic disease; 4) drug delivery to treat placental dysfunction

    A role for uric acid and the nalp3 inflammasome in antiphospholipid antibody-induced IL-1β production by human first trimester trophoblast

    Get PDF
    Women with antiphospholipid syndrome (APS) are at risk of recurrent pregnancy loss and obstetrical disorders, such as preeclampsia and intrauterine growth restriction (IUGR). Antiphospholipid antibodies (aPL) directly target the placenta by binding beta(2)-glycoprotein I (beta(2)GPI) expressed on the trophoblast. We recently demonstrated in human first trimester trophoblast cells that anti-beta(2)GPI antibodies (Abs) induce the secretion of IL-1 beta in a Toll-like receptor 4 (TLR4)-dependent manner. IL-1 beta secretion requires processing of pro-IL-1 beta and this is mediated by the inflammasome, a complex of Nalp3, apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1. The objective of this study was to determine if aPL induce IL-1 beta production in trophoblast via the inflammasome. Using a human first trimester trophoblast cell line, we demonstrated that a mouse anti-beta(2)GPI mAb and human polyclonal aPL-IgG induce IL-1 beta processing and secretion, which was partially blocked upon caspase-1 inhibition. Nalp3 and ASC knockdown also attenuated anti-beta(2)GPI Ab-induced IL-1 beta secretion. Furthermore, aPL stimulated the production of uric acid in a TLR4-dependent manner; and inhibition of uric acid prevented aPL-induced IL-1 beta production by the trophoblast. These findings demonstrate that aPL, via TLR4 activation, induce a uric acid response in human trophoblast, which in turn activates the Nalp3/ASC inflammasome leading to IL-1 beta processing and secretion. This novel mechanism may account for the inflammation at the maternal-fetal interface, which causes placental dysfunction and increases the risk of adverse pregnancy outcome in patients with APS

    Novel alleles in classical major histocompatibility complex class II loci of the brushtail possum (Trichosurus vulpecula)

    No full text
    We have investigated the diversity of class II major histocompatibility complex (MHC) loci in the brushtail possum (Trichosurus vulpecula), an important marsupial pest species in New Zealand. Immunocontraceptive vaccines, a method of fertility control that employs the immune system to attack reproductive cells or proteins, are currently being researched as a means of population control for the possum. Variation has been observed in the immune response of individual possums to immunocontraceptives. If this variability is under genetic control, it could compromise vaccine efficacy through preferential selection of animals that fail to mount a significant immune response and remain fertile. The MHC is an important immune region for antigen presentation and as such may influence the response to immunocontraceptives. We used known marsupial MHC sequences to design polymerase chain reaction primers to screen for possum MHC loci. Alpha and beta chains from two class II families, DA and DB, were found in possums throughout New Zealand. Forty new class II MHC alleles were identified in the possum, and the levels of variability in the MHC of this marsupial appear to be comparable to those of eutherian species. Preliminary population surveys showed evidence of clustering/variability in the distribution of MHC alleles in geographically separate locations. The extensive variation demonstrated in possums reinforces the need for further research to assess the risk that such MHC variation poses for long-term immunocontraceptive vaccine efficacy.</p

    Identification of novel major histocompatibility complex class I sequences in a marsupial, the brushtail possum (Trichosurus vulpecula)

    No full text
    The major histocompatibility complex (MHC) is an essential part of the vertebrate immune response. MHC genes may be classified as classical, non-classical or non-functional pseudogenes. We have investigated the diversity of class I MHC genes in the brushtail possum, a marsupial native to Australia and an introduced pest in New Zealand. The MHC of marsupials is poorly characterised compared to eutherian mammal species. Comparisons between marsupials and eutherians may enhance understanding of the evolution and functions of this important genetic region. We found a high level of diversity in possum class I MHC genes. Twenty novel sequences were identified using polymerase chain reaction (PCR) primers designed from existing marsupial class I MHC genes. Eleven of these sequences shared a high level of homology with the only previously identified possum MHC class I gene TrvuUB and appear to be alleles at a single locus. Another seven sequences are also similar to TrvuUB but have frame-shift mutations or stop codons early in their sequence, suggesting they are non-functional alleles of a pseudogene locus. The remaining sequences are highly divergent from other possum sequences and clusters with American marsupials in phylogenetic analysis, indicating they may have changed little since the separation of Australian and American marsupials.</p

    High variability in the MHC class II DA beta chain of the brushtail possum (Trichosurus vulpecula)

    No full text
    The diversity of class II major histocompatibility complex (MHC) loci was investigated in the brushtail possum, an important marsupial pest species in New Zealand. Immunocontraception, a form of fertility control that generates an autoimmune response, is being developed as a population control method for the possum. Because the immune response is partly under genetic control, an understanding of immunogenetics in possum will be crucial to the development of immunocontraceptive vaccines. MHC molecules are critical in the vertebrate immune response. Class II MHC molecules bind and present exogenously derived peptides to T lymphocytes and may be important in the presentation of immunocontraceptives. We used polymerase chain reaction primers designed to amplify the peptide binding region of possum class II MHC genes to isolate sequences from 49 animals. We have previously described 19 novel alleles from the DAB locus in the possum (Holland et al., Immunogenetics 60:449-460, 2008). Here, we report on another 11 novel alleles isolated from possum DAB, making this the most diverse marsupial locus described so far. This high level of diversity indicates that DAB is an important MHC locus in the possum and will need to be taken into account in the design of immunocontraceptive vaccines.</p

    Melatonin, a Potential Therapeutic Agent for Preeclampsia, Reduces the Extrusion of Toxic Extracellular Vesicles from Preeclamptic Placentae

    No full text
    Preeclampsia, characterised by maternal endothelial cell activation, is triggered by toxic factors, such as placental extracellular vesicles (EVs) from a dysfunctional placenta. The increased oxidative stress seen in the preeclamptic placenta links to endoplasmic reticulum (ER) stress. The ER regulates protein folding and trafficking. When the ER is stressed, proteins are misfolded, and misfolded proteins are toxic. Misfolded proteins can be exported from cells, via EVs which target to other cells where the misfolded proteins may also be toxic. Melatonin is a hormone and antioxidant produced by the pineal gland and placenta. Levels of melatonin are reduced in preeclampsia. In this study we investigated whether melatonin treatment can change the nature of placental EVs that are released from a preeclamptic placenta. EVs were collected from preeclamptic (n = 6) and normotensive (n = 6) placental explants cultured in the presence or absence of melatonin for 18 h. Misfolded proteins were measured using a fluorescent compound, Thioflavin-T (ThT). Endothelial cells were exposed to placental EVs overnight. Endothelial cell activation was measured by the quantification of cell-surface ICAM-1 using a cell-based ELISA. EVs from preeclamptic placentae carried significantly (p &lt; 0.001) more misfolded proteins than normotensive controls. Incubating preeclamptic placental explants in the presence of melatonin (1 µM and 10 µM) significantly (p &lt; 0.001) reduced the misfolded proteins carried by EVs. Culturing endothelial cells in the presence of preeclamptic EVs significantly increased the expression of ICAM-1. This increased ICAM-1 expression was significantly reduced when the endothelial cells were exposed to preeclamptic EVs cultured in the presence of melatonin. This study demonstrates that melatonin reduces the amount of misfolded proteins carried by EVs from preeclamptic placentae and reduces the ability of these EVs to activate endothelial cells. Our study provides further preclinical support for the use of melatonin as a treatment for preeclampsia

    MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum

    No full text
    The possum is a major invasive pest in New Zealand. One option for its control is the use of immunocontraceptive vaccines. Initial trials of vaccines have shown individual variation in response. The use of vaccines on wild populations could result in the evolution of a resistant population through selection for possums that remain fertile because of low or no response. Understanding the basis of this variation is therefore important. The major histocompatibility complex (MHC) is an important influence on the nature of immune responses. This study has investigated the relationship between MHC alleles and individual immune responses to immunocontraceptive vaccines comprising zona pellucida peptides. We identified MHC alleles and putative haplotypes, and compared these between individuals with measured responses to immunocontraceptive vaccines. Two haplotypes were found to associate significantly with differences in vaccine response. Possums that carried haplotype 6 showed reduced responsiveness to one vaccine, while possums that carried haplotype 9 showed increased responsiveness to a separate vaccine. The identification of MHC haplotypes associated with different responses to immunocontraceptive vaccines offers the opportunity to understand what factors trigger non-response and the persistence of fertility in some individuals, and may allow vaccines to be optimised to minimise non-responsiveness.</p
    • …
    corecore