17,185 research outputs found

    The Conductance of a Perfect Thin Film with Diffuse Surface Scattering

    Full text link
    The conductance of thin films with diffusive surface scattering was solved semi-classically by Fuchs and Sondheimer. However, when the intrinsic electron mean free path is very large or infinite their conductance diverges. In this letter a simple diffraction picture is presented. It yields a conductance which corresponds to a limiting mean free path. PACS: 73.50.-h, 73.50.Bk, 73.23.-b, 73.25.+i, B14

    Microscopic picture of aging in SiO2

    Get PDF
    We investigate the aging dynamics of amorphous SiO2 via molecular dynamics simulations of a quench from a high temperature T_i to a lower temperature T_f. We obtain a microscopic picture of aging dynamics by analyzing single particle trajectories, identifying jump events when a particle escapes the cage formed by its neighbors, and by determining how these jumps depend on the waiting time t_w, the time elapsed since the temperature quench to T_f. We find that the only t_w-dependent microscopic quantity is the number of jumping particles per unit time, which decreases with age. Similar to previous studies for fragile glass formers, we show here for the strong glass former SiO2 that neither the distribution of jump lengths nor the distribution of times spent in the cage are t_w-dependent. We conclude that the microscopic aging dynamics is surprisingly similar for fragile and strong glass formers.Comment: 4 pages, 7 figure

    Pseudo-High-Order Symplectic Integrators

    Get PDF
    Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6 substeps per timestep, respectively. The number of substeps increases rapidly with order in timestep, rendering higher-order methods impractical. However, symplectic integrators are often applied to systems in which perturbations between bodies are a small factor of the force due to a dominant central mass. In this case, it is possible to create optimized symplectic algorithms that require fewer substeps per timestep. This is achieved by only considering error terms of order epsilon, and neglecting those of order epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which effectively behave as 4th and 6th-order integrators when epsilon is small. These algorithms are more efficient than the usual 2nd and 4th-order methods when applied to planetary systems.Comment: 14 pages, 5 figures. Accepted for publication in the Astronomical Journa

    Bureau of Electronic and Appliance Repair

    Get PDF

    Bureau of Electronic and Appliance Repair

    Get PDF

    Bureau of Electronic and Appliance Repair

    Get PDF

    Department of Consumer Affairs

    Get PDF

    Board of Landscape Architects

    Get PDF
    • …
    corecore