347 research outputs found

    Creating User-Friendly Tools for Data Analysis and Visualization in K-12 Classrooms: A Fortran Dinosaur Meets Generation Y

    Get PDF
    During the summer of 2007, as part of the second year of a NASA-funded project in partnership with Christopher Newport University called SPHERE (Students as Professionals Helping Educators Research the Earth), a group of undergraduate students spent 8 weeks in a research internship at or near NASA Langley Research Center. Three students from this group formed the Clouds group along with a NASA mentor (Chambers), and the brief addition of a local high school student fulfilling a mentorship requirement. The Clouds group was given the task of exploring and analyzing ground-based cloud observations obtained by K-12 students as part of the Students' Cloud Observations On-Line (S'COOL) Project, and the corresponding satellite data. This project began in 1997. The primary analysis tools developed for it were in FORTRAN, a computer language none of the students were familiar with. While they persevered through computer challenges and picky syntax, it eventually became obvious that this was not the most fruitful approach for a project aimed at motivating K-12 students to do their own data analysis. Thus, about halfway through the summer the group shifted its focus to more modern data analysis and visualization tools, namely spreadsheets and Google(tm) Earth. The result of their efforts, so far, is two different Excel spreadsheets and a Google(tm) Earth file. The spreadsheets are set up to allow participating classrooms to paste in a particular dataset of interest, using the standard S'COOL format, and easily perform a variety of analyses and comparisons of the ground cloud observation reports and their correspondence with the satellite data. This includes summarizing cloud occurrence and cloud cover statistics, and comparing cloud cover measurements from the two points of view. A visual classification tool is also provided to compare the cloud levels reported from the two viewpoints. This provides a statistical counterpart to the existing S'COOL data visualization tool, which is used for individual ground-to-satellite correspondences. The Google(tm) Earth file contains a set of placemarks and ground overlays to show participating students the area around their school that the satellite is measuring. This approach will be automated and made interactive by the S'COOL database expert and will also be used to help refine the latitude/longitude location of the participating schools. Once complete, these new data analysis tools will be posted on the S'COOL website for use by the project participants in schools around the US and the world

    Personal non-commercial use only

    Get PDF
    ABSTRACT. Objective. To determine the epidemiology, clinical features, and microbiology of adult native joint septic arthritis in Canterbury, New Zealand, over a 5-year period in individuals with and without an underlying rheumatic disorder. Methods. Patients with native joint septic arthritis were identified retrospectively and classified by Newman's criteria. The clinical characteristics were described and comparisons made between those with and without underlying rheumatic disease. Results. Two hundred forty-eight cases of native joint septic arthritis (mean age 60, range 16-97 yrs) were identified with an overall incidence rate of 12.0/100,000/year (95% CI 10.6-13.6). Yearly incidence increased with age to a maximum of 73.4/100,000 in those > 90 years of age. Septic arthritis was iatrogenic in 16.9% of cases while 27% had an underlying inflammatory arthritis including gout (14.9%), calcium pyrophosphate disease (8.5%), and rheumatoid arthritis (4%). Few patients were taking immunosuppressant therapy, with just 1 taking a biological agent. Staphylococcus aureus was the most commonly identified organism. Those with underlying inflammatory arthritis were significantly older (73.6 yrs vs 55.6 yrs; p < 0.001), more likely to be female (55.2% vs 26.0%; p < 0.001), and to have septic polyarthritis (16.4% vs 4.4%; p = 0.002). The 30-day mortality was 2%, increasing to 6% at 90 days. Conclusion. The incidence of septic arthritis in Canterbury, New Zealand, is higher than in previous studies. Crystal arthropathy commonly coexisted with infection although autoimmune arthritis and immunosuppression was less of a factor than anticipated. (First Release November 1 2015

    Personal non-commercial use only

    Get PDF
    ABSTRACT. Objective. To determine the epidemiology, clinical features, and microbiology of adult native joint septic arthritis in Canterbury, New Zealand, over a 5-year period in individuals with and without an underlying rheumatic disorder. Methods. Patients with native joint septic arthritis were identified retrospectively and classified by Newman's criteria. The clinical characteristics were described and comparisons made between those with and without underlying rheumatic disease. Results. Two hundred forty-eight cases of native joint septic arthritis (mean age 60, range 16-97 yrs) were identified with an overall incidence rate of 12.0/100,000/year (95% CI 10.6-13.6). Yearly incidence increased with age to a maximum of 73.4/100,000 in those > 90 years of age. Septic arthritis was iatrogenic in 16.9% of cases while 27% had an underlying inflammatory arthritis including gout (14.9%), calcium pyrophosphate disease (8.5%), and rheumatoid arthritis (4%). Few patients were taking immunosuppressant therapy, with just 1 taking a biological agent. Staphylococcus aureus was the most commonly identified organism. Those with underlying inflammatory arthritis were significantly older (73.6 yrs vs 55.6 yrs; p < 0.001), more likely to be female (55.2% vs 26.0%; p < 0.001), and to have septic polyarthritis (16.4% vs 4.4%; p = 0.002). The 30-day mortality was 2%, increasing to 6% at 90 days. Conclusion. The incidence of septic arthritis in Canterbury, New Zealand, is higher than in previous studies. Crystal arthropathy commonly coexisted with infection although autoimmune arthritis and immunosuppression was less of a factor tha

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 3. Site Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations. When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps. â—ŹStep 1 describes the process of defining site-level restoration objectives. â—ŹStep 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting. â—ŹStep 3 compares the current vegetation to the plant communities associated with the site State and Transition models. â—ŹStep 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success. â—ŹStep 5 is a brief discussion of how weather before and after treatments may impact restoration success. â—ŹStep 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives. â—ŹStep 7 addresses decisions regarding post-restoration livestock grazing management. â—ŹStep 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring. â—ŹStep 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 2. Landscape Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. Land managers do not have resources to restore all locations because of the extent of the restoration need and because some land uses are not likely to change, therefore, restoration decisions made at the landscape to regional scale may improve the effectiveness of restoration to achieve landscape and local restoration objectives. We present a landscape restoration decision tool intended to assist decision makers in determining landscape objectives, to identify and prioritize landscape areas where sites for priority restoration projects might be located, and to aid in ultimately selecting restoration sites guided by criteria used to define the landscape objectives. The landscape restoration decision tool is structured in five sections that should be addressed sequentially. Each section has a primary question or statement followed by related questions and statements to assist the user in addressing the primary question or statement. This handbook will guide decision makers through the important process steps of identifying appropriate questions, gathering appropriate data, developing landscape objectives, and prioritizing landscape patches where potential sites for restoration projects may be located. Once potential sites are selected, land managers can move to the site-specific decision tool to guide restoration decisions at the site level

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 1. Concepts for Understanding and Applying Restoration

    Get PDF
    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels

    High Energy Colliders as Black Hole Factories: The End of Short Distance Physics

    Get PDF
    If the fundamental Planck scale is of order a TeV, as the case in some extra-dimensions scenarios, future hadron colliders such as the Large Hadron Collider will be black hole factories. The non-perturbative process of black hole formation and decay by Hawking evaporation gives rise to spectacular events with up to many dozens of relatively hard jets and leptons, with a characteristic ratio of hadronic to leptonic activity of roughly 5:1. The total transverse energy of such events is typically a sizeable fraction of the beam energy. Perturbative hard scattering processes at energies well above the Planck scale are cloaked behind a horizon, thus limiting the ability to probe short distances. The high energy black hole cross section grows with energy at a rate determined by the dimensionality and geometry of the extra dimensions. This dependence therefore probes the extra dimensions at distances larger than the Planck scale.Comment: Latex, 28 pages. v4: minor changes, largely to agree with published version; appendix added comparing convention

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Reflection and the art of coaching: fostering high-performance in olympic ski cross

    Get PDF
    In preparation for the 2010 Vancouver Winter Olympic Games, the lead author engaged in systematic reflection in an attempt to implement coaching behaviours and create practice environments that promoted athlete development (psycho-social and physical performance). The research was carried out in relation to his work as head Ski Cross coach working with (primarily) three athletes in their quest for Olympic qualification and subsequent performance success in the Olympic Games. This project sought to examine coach-athlete interactions. Of particular interest were coach and athlete responses regarding the implementation of autonomy supportive coaching behaviours in a high context. Autonomy supportive coaching behaviours have previously been strongly associated with positive athlete psycho-social and performance outcomes, however, a paucity of research has examined its implementation in high-performance contexts. Through the use of participant ethnography, it was possible to gain considerable insights regarding athletes' perceptions of choice, implications of perceived athletic hierarchies, as well as cultural and experience-related influences on training and performance expectations
    • …
    corecore