491 research outputs found

    A fault-tolerant continuous-variable measurement-based quantum computation architecture

    Full text link
    Continuous variable measurement-based quantum computation on cluster states has in recent years shown great potential for scalable, universal, and fault-tolerant quantum computation when combined with the Gottesman-Kitaev-Preskill (GKP) code and quantum error correction. However, no complete fault-tolerant architecture exists that includes everything from cluster state generation with finite squeezing to gate implementations with realistic noise and error correction. In this work, we propose a simple architecture for the preparation of a cluster state in three dimensions in which gates by gate teleportation can be efficiently implemented. To accommodate scalability, we propose architectures that allow for both spatial and temporal multiplexing, with the temporal encoded version requiring as little as two squeezed light sources. Due to its three-dimensional structure, the architecture supports topological qubit error correction, while GKP error correction is efficiently realized within the architecture by teleportation. To validate fault-tolerance, the architecture is simulated using surface-GKP codes, including noise from GKP-states as well as gate noise caused by finite squeezing in the cluster state. We find a fault-tolerant squeezing threshold of 13.2 dB with room for further improvement

    Social learning against data falsification in sensor networks

    Get PDF
    Sensor networks generate large amounts of geographically-distributed data. The conventional approach to exploit this data is to first gather it in a special node that then performs processing and inference. However, what happens if this node is destroyed, or even worst, if it is hijacked? To explore this problem, in this work we consider a smart attacker who can take control of critical nodes within the network and use them to inject false information. In order to face this critical security thread, we propose a novel scheme that enables data aggregation and decision-making over networks based on social learning, where the sensor nodes act resembling how agents make decisions in social networks. Our results suggest that social learning enables high network resilience, even when a significant portion of the nodes have been compromised by the attacker

    Band-width control in a perovskite-type 3d^1 correlated metal Ca_1-xSr_xVO_3. II. Optical spectroscopy investigation

    Full text link
    Optical conductivity spectra of single crystals of Ca_1-xSr_xVO_3 have been studied to elucidate how the electronic behavior depends on the strength of the electron correlation without changing the nominal number of electrons per vanadium atom. The effective mass deduced by the analysis of the Drude-like contribution do not show critical enhancement, even though the system is close to the Mott transition. Besides the Drude-like contribution, two anomalous features were observed in the optical conductivity spectra of the intraband transition within the 3d band. These features can be assigned to transitions involving the incoherent and coherent bands near the Fermi level. The large spectral weight redistribution in this system, however, does not involve a large mass enhancement.Comment: 12 pages in a Phys. Rev. B camera-ready format with 16 EPS figures embedded. LaTeX 2.09 source file using "camera.sty" and "prbplug.sty" provided by N. Shirakawa. For OzTeX (Macintosh), use "ozfig.sty" instead of "psfig.sty". "ozfig.sty" can be also obtained by e-mail request to N. Shirakawa: . Submitted to Phys. Rev. B. See "Part I (by Inoue et al.)" at cond-mat/980107

    The Benefits and the Costs of Using Auditory Warning Messages in Dynamic Decision Making Settings

    Get PDF
    The failure to notice critical changes in both visual and auditory scenes may have important consequences for performance in complex dynamic environments, especially those related to security such as aviation, surveillance during major events, and command and control of emergency response. Previous work has shown that a significant number of situation changes remain undetected by operators in such environments. In the current study, we examined the impact of using auditory warning messages to support the detection of critical situation changes and to a broader extent the decision making required by the environment. Twenty-two participants performed a radar operator task involving multiple subtasks while detecting critical task-related events that were cued by a specific type of audio message. Results showed that about 22% of the critical changes remained undetected by participants, a percentage similar to that found in previous work using visual cues to support change detection. However, we found that audio messages tended to bias threat evaluation towards perceiving objects as more threatening than they were in reality. Such findings revealed both benefits and costs associated with using audio messages to support change detection in complex dynamic environments

    Low pH immobilizes and kills human leukocytes and prevents transmission of cell-associated HIV in a mouse model

    Get PDF
    BACKGROUND: Both cell-associated and cell-free HIV virions are present in semen and cervical secretions of HIV-infected individuals. Thus, topical microbicides may need to inactivate both cell-associated and cell-free HIV to prevent sexual transmission of HIV/AIDS. To determine if the mild acidity of the healthy vagina and acid buffering microbicides would prevent transmission by HIV-infected leukocytes, we measured the effect of pH on leukocyte motility, viability and intracellular pH and tested the ability of an acidic buffering microbicide (BufferGel(®)) to prevent the transmission of cell-associated HIV in a HuPBL-SCID mouse model. METHODS: Human lymphocyte, monocyte, and macrophage motilities were measured as a function of time and pH using various acidifying agents. Lymphocyte and macrophage motilities were measured using video microscopy. Monocyte motility was measured using video microscopy and chemotactic chambers. Peripheral blood mononuclear cell (PBMC) viability and intracellular pH were determined as a function of time and pH using fluorescent dyes. HuPBL-SCID mice were pretreated with BufferGel, saline, or a control gel and challenged with HIV-1-infected human PBMCs. RESULTS: Progressive motility was completely abolished in all cell types between pH 5.5 and 6.0. Concomitantly, at and below pH 5.5, the intracellular pH of PBMCs dropped precipitously to match the extracellular medium and did not recover. After acidification with hydrochloric acid to pH 4.5 for 60 min, although completely immotile, 58% of PBMCs excluded ethidium homodimer-1 (dead-cell dye). In contrast, when acidified to this pH with BufferGel, a microbicide designed to maintain vaginal acidity in the presence of semen, only 4% excluded dye at 10 min and none excluded dye after 30 min. BufferGel significantly reduced transmission of HIV-1 in HuPBL-SCID mice (1 of 12 infected) compared to saline (12 of 12 infected) and a control gel (5 of 7 infected). CONCLUSION: These results suggest that physiologic or microbicide-induced acid immobilization and killing of infected white blood cells may be effective in preventing sexual transmission of cell-associated HIV

    Orbital character of O 2p unoccupied states near the Fermi level in CrO2

    Full text link
    The orbital character, orientation, and magnetic polarization of the O 2pp unoccupied states near the Fermi level (EFE_F) in CrO2_2 was determined using polarization-dependent X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) from high-quality, single-crystal films. A sharp peak observed just above EFE_F is excited only by the electric field vector (E\bf E) normal to the tetragonal cc-axis, characteristic of a narrow band (\approx 0.7 eV bandwidth) constituted from O 2pp orbitals perpendicular to cc (O 2pyp_y) hybridized with Cr 3dxzyzd_{xz-yz} t2gt_{2g} states. By comparison with band-structure and configuration-interaction (CI) cluster calculations our results support a model of CrO2_2 as a half-metallic ferromagnet with large exchange-splitting energy (Δexchsplit\Delta_{exch-split} \approx 3.0 eV) and substantial correlation effects.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. B Rapid Com

    Synthesis, Characterization and Magnetic Susceptibility of the Heavy Fermion Transition Metal Oxide LiV_{2}O_{4}

    Full text link
    The preparative method, characterization and magnetic susceptibility \chi measurements versus temperature T of the heavy fermion transition metal oxide LiV_{2}O_{4} are reported in detail. The intrinsic \chi(T) shows a nearly T-independent behavior below ~ 30 K with a shallow broad maximum at about 16 K, whereas Curie-Weiss-like behavior is observed above 50-100 K. Field-cooled and zero-field-cooled magnetization M measurements in applied magnetic fields H = 10 to 100 G from 1.8 to 50 K showed no evidence for spin-glass ordering. Crystalline electric field theory for an assumed cubic V point group symmetry is found insufficient to describe the observed temperature variation of the effective magnetic moment. The Kondo and Coqblin-Schrieffer models do not describe the magnitude and T dependence of \chi with realistic parameters. In the high T range, fits of \chi(T) by the predictions of high temperature series expansion calculations provide estimates of the V-V antiferromagnetic exchange coupling constant J/k_{B} ~ 20 K, g-factor g ~ 2 and the T-independent susceptibility. Other possible models to describe the \chi(T) are discussed. The paramagnetic impurities in the samples were characterized using isothermal M(H) measurements with 0 < H <= 5.5 Tesla at 2 to 6 K. These impurities are inferred to have spin S_{imp} ~ 3/2 to 4, g_{imp} ~ 2 and molar concentrations of 0.01 to 0.8 %, depending on the sample.Comment: 19 typeset RevTeX pages, 16 eps figures included, uses epsf; to be published in Phys. Rev.
    corecore