
Social Learning Against Data Falsification in
Sensor Networks

Fernando Rosas and Kwang-Cheng Chen

Abstract Sensor networks generate large amounts of geographically-distributed
data. The conventional approach to exploit this data is to first gather it in a special
node that then performs processing and inference. However, what happens if this
node is destroyed, or even worst, if it is hijacked? To explore this problem, in this
work we consider a smart attacker who can take control of critical nodes within
the network and use them to inject false information. In order to face this criti-
cal security thread, we propose a novel scheme that enables data aggregation and
decision-making over networks based on social learning, where the sensor nodes
act resembling how agents make decisions in social networks. Our results suggest
that social learning enables high network resilience, even when a significant portion
of the nodes have been compromised by the attacker.

1 Introduction

Large networks of devices that monitor extensive geographical areas are widespread
today, and will become pervasive in the near future. These networks enable critical
services to society, including surveillance over military or secure zones, monitoring
of drinkable water tanks and protection from chemical attacks, intrusion detection
to private property, etc [27, 3]. However, the reliability of these networks is usually
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limited due to the high vulnerability of the sensor nodes [23]. In reality nodes are
frequently deployed in unprotected locations and can be damaged or destroyed, or
can be subject of physical or cyber captures. Moreover, nodes are generally not
tamper-proof due to cost concerns, and their limited computing power, memory,
and energy capabilities do not allow sophisticated cryptographic techniques.

One of the most serious threats to the reliability of a large network of sensors is
the data falsification or “Byzantine” attack, where an adversary takes control over
a number of authenticated nodes [16]. Following the classic Byzantine Generals
Problem [14], Byzantine nodes can generate false data, exhibit arbitrary behaviour
or collude in order to create a networked malfunction. The effect of data falsifica-
tion over distributed detection has been intensely studied, characterizing the impact
over the detection performance and also proposing various defense mechanisms (c.f.
[28] for an overview, and also [17, 32, 12, 11, 10] for some recent contributions).
However, all these works focus in networks with star or tree topology, and rely on
centralising the decision-making in a special node called “fusion center” (FC) which
gathers all the sensed data. Note that these approaches rely on a strong division of
labour: ordinary sensor nodes just sense and forward data while the processing is
done exclusively at the FC, corresponding to a distributed-sensing with centralized-
processing (DSCP) approach.

A key assumption in the literature is that the adversary can compromise regular
sensor nodes but not the FC itself. However, in many scenarios the limited range
of nodes’ radios force the FC to be installed in unsafe locations, being vulnerable
to tampering as well. A tampered FC completely disables the capabilities of the
network, generating a single point of failure and hence becoming the weakest point
of the system [19]. To address this serious security thread, this letter is novel in
considering powerful topology-aware data falsification attacks, where the adversary
knows the network topology and leverage this knowledge to take control of the most
critical nodes of the network —either regular nodes or FCs. This represents a worst-
case scenario, where the network structure has been disclosed e.g. from network
tomography via traffic analysis[6].

In order to address this issue one needs to consider distributed-sensing with
distributed-processing (DSDP) schemes, which avoid FC functions while distribut-
ing processing tasks throughout the network. However, the design of reliable DSDP
schemes is a challenging task. In effect, even though the distributed sensing liter-
ature is vast (see e.g. [27, 3] and references therein), the construction of optimal
schemes is in general NP-hard [25]. Moreover, although in many cases the optimal
schemes can be characterized as a set of thresholds for likelihood functions, the de-
termination of these thresholds is usually an intractable problem [26]. For example,
symmetric thresholds can be suboptimal even for networks with similar sensors ar-
ranged in star topology [31], being only asymptotically optimal when the network
size increases [26, 8]. Moreover, symmetric strategies are not suitable for more elab-
orate network topologies, and hence heuristic methods are usually necessary.

To deal with this dilemma, in this work we propose a DSDP scheme based on
social learning principles, which resembles social decisions-making processes [5,
1, 13]. The scheme is a threshold-based data fusion strategy related to the ones
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considered in [26]. However, its connection with social decision-making enables an
intuitive understanding of its inner mechanisms, and also allows an efficient im-
plementation that is suitable for the limited computational capabilities of a sensor
node. For avoiding the security threads introduced by fusion centers, our scheme
uses a tandem or serial topology [29, 18, 24, 30, 2]. Contrasting with the literature,
our analysis does not focus on optimality issues of the data fusion but aims to illus-
trate how the distribution of processing tasks can enable network resilience against
a powerful topology-aware data falsification attacker. We show how the network
resilience holds even when a significant number of nodes have been compromised.

The rest of this article is structured as follows. First Section 2 introduces the
system model. Our social learning data fusion rule is then presented in Section 3, and
it is then illustrated in a concrete scenario in Section 4. Finally, Section 5 presents
our main conclusions.

2 System model and problem statement

2.1 System model

We consider a network of N nodes, where each node corresponds to an electronic
device that has been deployed over a geographical area where sensing and surveil-
lance is needed. The node are equipped with sensors that enables them to sense
relevant variables from the environment. The output of the sensor of the n-th node is
denoted by Sn, taking values over a set S that can be discrete or continuous. Based
on these signals, the network needs to infer the value of the binary variable W , with
events {W = 1} and {W = 0} corresponding to the presence or absence of an at-
tack, respectively. No knowledge about of the prior distribution of W is assumed, as
attacks are rare and might follow unpredictable patters.

Nodes have equal sensing capabilities, and hence the signals Sn are assumed to
be identically distributed. For the sake of tractability, it is assumed that the vari-
ables S1, . . . ,SN are conditionally independent given the event {W = w}, following
a probability distribution denoted by µw

∗. It is also assumed that both µ0 and µ1
are absolutely continuous with respect to each other [15], i.e. no particular signal
determines W unequivocally. The log-likelihood ratio of these two distributions is
therefore given by the logarithm of the corresponding Radon-Nikodym derivative
ΛS(s) = log dµ1

dµ0
(s).†. It is also assumed that µ0 6= µ1, so that Λ(Sn) is not trivially

equal to zero.

∗ The conditional independency of sensor signals is satisfied when the sensor noise is due to local
causes (e.g. thermal noise), but do not hold when there exist common noise sources (e.g. in the
case of distributed acoustic sensors [4]).
† When Sn takes a finite number of values then dµ1

dµ0
(s) = P{Sn=s|W=1}

P{Sn=s|W=0} , while if Sn is a continuous

random variable with conditional p.d.f. p(Sn|w) then dµ1
dµ0

(s) = p(s|w=1)
p(s|w=0) .
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In addition to sensing hardware, each node is equipped with computing capa-
bility and a wireless radio to transit and receive data. Two nodes in the network
are said to be connected if they can exchange information wirelessly. Note that
sensor nodes usually have very limited battery budget, which impose severe re-
strictions over the communication capabilities. Therefore, it is assumed that each
node forward its data to others only by broadcasting a binary variable Xn

‡. Without
loss of generality, the nodes transmit their signals sequentially according to their
indices (i.e. node 1 transmits first, then node 2, etc). Due to the nature of wire-
less broadcasting, which might be overlooked in some security literatures, nearby
transmissions can be overheard. Therefore, a static fully-connected network topol-
ogy is considered that allows the n-th node to generate Xn based on information
provided by Sn and Xn−1 = (X1, . . . ,Xn−1). A strategy is a collection of functions
πn : S ×{0,1}n−1 → {0,1} such that Xn = π(Sn,Xn−1). Although the burden of
overhearing all the previously broadcasted signals can be reduced by designing
smart network topologies, these networking functions are left for future studies.

The network operator collects the transmitted packages from a specific node
labeled as nc ∈ {1, . . . ,N}, possibly employing unmanned ground or aerial ve-
hicles that access a shared signal at a specific network location, or by using a
shared communication channel. Therefore, Xnc constitutes the output of the over-
all inference process. The network performance is quantified by the corresponding
miss-detection and false alarm rates, given by P{MD} = P{Xnc = 0|W = 1} and
P{FA}= P{Xnc = 1|W = 0}, respectively.

Finally, it is assumed that N∗ Byzantine nodes are controlled by an adversary
without being noticed by the network operator. The adversary can freely define the
values of the binary signals transmitted by Byzantine nodes in order to degrade the
network performance. It is further assumed that the adversary is “topology-aware”,
knowing the node sequence and the specific strategy {πn}N

n=1 that is in use. There-
fore, the adversary could well control the N∗ most critical nodes in terms of network
performance. However, the adversary has no knowledge about nc, as it can be chosen
at run-time and changed regularly.

2.2 Problem statement

Our goal is to develop a network-resilient strategy to mitigate the effect the attacks
coming from a topology-aware adversary when the network operator (i.e. defender)
has no knowledge of the number of Byzantine nodes or other attack’s statistics.
Note that in most surveillance applications miss-detections are more important than
false alarms, being difficult to estimate the cost of the worst-case scenario. There-
fore, the system performance is evaluated following the Neyman-Pearson criteria by
setting an allowable false alarm rate and focusing on the achievable miss-detection
rate [20]. Note than finding optimal solutions is a formidable challenge, even for the

‡ These signals could be appended to wireless control packages and viceversa, or also could be
shared by light, ultrasound or other media.
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simple case of networks with start topology and no Byzantine attacks (see [9] and
references therein).

Most signal processing techniques for distributed detection rely on a FC(s) that
gather data and generate estimators using the data provided by passive sensor
nodes [21]. Intuitively, if Xn is influenced by Xm with m < n, this would “double-
count” the information provided by Sm. To avoid this, traditional distributed detec-
tion schemes choose to ignore previously broadcasted signals. This leads to good
performance statistics, achieving exponentially decaying miss-detection rates with
respect to the number of sensing nodes [7]. However, as nodes don’t perform any
data aggregation, each of their shared signals are not, by themselves, good estima-
tions of the target variable. This generates a single point of failure in the network,
as if the adversary compromises the FC(s) then the only accurate estimator that ex-
ist within the network is lost and hence the inference process fails. The FC is the
most critical node to the detection performance, and therefore would be the most
endangered element of the network§.

3 Social learning as a data aggregation scheme

3.1 Data fusion rule

Social learning models supply new directions to analyze sequential decision pro-
cesses where agents combine personal information and peers’ opinions [22]. Ap-
plied to a sensor network, each node can be considered as an agent that decides the
presence of attacks based on their measurements and overheard signals from other
nodes. In this work we consider rational agents that follow a Bayesian strategy,
denoted as πb

n (Sn,Xn−1), which can be described by the following rule:

P
{

W = 1|Sn,Xn−1
}

P
{

W = 0|Sn,Xn−1
} πb

n=0
≶

πb
n=1

u(0,0)−u(1,0)
u(1,1)−u(0,1)

. (1)

Above, u(x,w) is a cost assigned to the decision Xn = x when W = w, which
can be engineered in order to match the relevance of miss-detections and false
alarms [20]. Moreover, by noting that Xn−1 = πb

n−1(Sn−1,Xn−2) is influenced only
by S1, . . . ,Sn−1, the conditional independency of the signals imply that Sn and Xn−1

are also conditionally independent given W = w. Therefore, using the Bayes rule, a
direct calculation shows that (1) can be re-written as

ΛS(Sn)+ΛXn−1(Xn−1)
πb

n=0
≶

πb
n=1

τ , (2)

§ For the case of wireless sensor networks the typical tranmission ranges are beyond 40 meters. It
is therefore likely that the fusion center may also be deployed in a vulnerable location and hence
be victim of tampering.
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where τ = log P{W=0}
P{W=1} + log u(0,0)−u(1,0)

u(1,1)−u(0,1) and ΛXn−1(Xn−1) is the log-likelihood ratio

of Xn−1¶. In simple words, (2) states how the the n-th node should fuse the knowl-
edge coming from Sn and Xn−1: it should only infere the presence of an attack when
the sum of the log-likelihood terms is larger than τ .

As in a realistic scenario the statistical properties of attacks are usually not avail-
able to the defender, our approach is for each node to follow a bayesian strategy that
ignores the potential attack. Such an approach has three attractive features:

1. Provides a scheme that does not need to adapt to different attacker’s profiles.
2. Minimizes the average cost when no attacks take place.
3. Enables network resilience (c.f. Section III-C and IV).

Clearly Byzantine nodes do not follow (2), as their interest is to degrade the
network performance. Let us denote as B the set of indices of the Byzantine nodes
and N∗ the cardinality of B. As events {W = 0} are much more frequent than
{W = 1}, any abnormal increase of the false alarm rate would be easily noted and
hence provides no benefit to the adversary. Therefore, a rational strategy for the
adversary is to increase the miss-detection rate by forcing Xn = 0 for all n ∈B.

3.2 An algorithm for computing the social log-likelihood

The only challenge for implementing (2) as a data processing method in a sensor
node is to have an efficient algorithm for computing ΛXn−1(xn−1). For finding such
an algorithm, a direct application of the chain rule of probabilities shows that

ΛXn(xn) = log
n

∏
k=1

P
{

Xk = xk|Xk−1 = xk−1,W = 1
}

P
{

Xk = xk|Xk−1 = xk−1,W = 0
} ,

with the understanding that X0 = x0 is null. Then, following the discussion presented
in Section 3.1, we compute P{Xk = xk |Xk−1 = xk−1,W = w} ignoring potential
attacks. Assuming that the k-th node is not a Byzantine node, one obtains

P{Xk = 0 |Xk−1 = xk−1,W = w}

=
∫

S
P
{

Xk = 0|Xk−1 = xk−1,W = w,Sk = s
}

dµw(s)

=
∫

S
1
{

π
b
k (s,x

k−1) = 0
}

dµw(s)

= Pw

{
ΛS(Sk)+ΛXk−1(xk−1)< τ

}
= FΛ

w (τ−ΛXk−1(xk−1)) , (3)

¶ As the prior distribution of W is usually unknown, the network operator needs to select the
lowest value of τ that satisfies the required false alarm rate given by the Neyman-Pearson criteria
(c.f. Section 2.2).
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where FΛ
w (·) is the c.d.f. of the variable Λs(Sn) conditioned to W = w. Using the

above results, it can be shown that

ΛXn+1(xn+1)−ΛXn(xn) = λ (xk,τ−ΛXn(xn)) ,

where λ (·, ·) is defined as

λ (x,a) = x log
FΛ

1 (a)
FΛ

0 (a)
+(1− x) log

1−FΛ
1 (a)

1−FΛ
0 (a)

.

Leveraging above derivations, we develop Algorithm 1 as a simple iterative pro-
cedure for computing ΛXn(xn). Note that the algorithm’s complexity scales grace-
fully, as it grows linearly with the length of xn. Moreover, the algorithm does not
need any information about potential attack, only requiring knowledge of the sig-
nals statistics as given by FΛ

w .

Algorithm 1 Computation of ΛXn(xn)

1: function LOGLIKELIHOOD(xn,τ)
2: L1 = λ (x1,τ).
3: for k = 2, . . . ,n do
4: Lk = Lk−1 +λ (xk+1,τ−Lk−1).
5: end for
6: return Ln
7: end function

3.3 Information cascades as strength or weakness

The term “social learning” refers to the fact that Xn becomes a better predictor of W
as n grows, and hence nc is usually chosen as one of the last nodes in the decision
sequence. However, as the number of shared signals increases the growing “social
pressure” can make nodes to ignore their individual measurements and blindly fol-
low the dominant choice, generating a herd behaviour [5]. This phenomenon, known
as information cascade, introduces severe limitations in the asymptotic performance
of social learning [1].

A positive effect of information cascades, which has been overlooked before,
is to make a large number of agents/nodes to hold equally qualified estimator(s),
generating many locations where the network operator can collect aggregated data.
This avoids the existence of a single point of failure and allows to robustly face
topology-aware attacks. In fact an attempt to blindly guess nc in order to tamper the
nc-node would be inefficient due to the large number of potential candidates.

However, an attacker can also leverage the information cascade phenomenon. A
rational attacking strategy is to tamper the first N∗ nodes of the decision sequence,
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setting their signals in order to push the networked decisions towards a misleading
cascade‖. If N∗ is large enough an information cascade can be triggered almost
surely, making the learning process to fail. However, if N∗ is not large enough then
the network may undo the initial pool of wrong opinions and end up triggering
a correct cascade anyway. This capability of “resilience” depends on the signals
distribution, and is explored in the next section.

4 Proof of concept

To illustrate the application of social learning against topology-aware data falsifica-
tion attacks, we consider a network of randomly distributed sensors over a sensitive
geographical area following a Poisson Point process (PPP). The ratio of the area
that is within the range of each sensor is denoted by r. If attacks occur uniformly
over the surveilled area, then r is also the probability of an attack taking place under
the coverage area of a particular sensor is. It is further assumed that each node is
equipped with a binary sensor (i.e. Sn ∈ {0,1}), whose probability of generating a
wrong measurement due to electronic and other imperfections is denoted by q.

For finding the posterior distributions of Sn, first note that

P{Sn = 1|W = 0}= q,

as a sensor false-alarm can only be due to noise. The probability of detecting an
event is given by

P{Sn = 1|W = 1}=P{attack in range, good measurement|W = 1}
+P{attack out of range, bad measurement|W = 1}

=r+q−2rq .

Therefore, the sensor miss-detection rate is P1 {Sn = 0}= 1−r−q+2rq. The signal
log-likehood is hence given by

ΛS(Sn) = Sn log
r+q−2rq

q
+(1−Sn) log

1− r−q+2rp
1−q

.

Note that ΛS(1) > ΛS(0), which is consequence of r + q− 2rq > q and q < 1/2.
Correspondingly, for given W = w, the c.d.f. of ΛS is

FΛ
w (l) =


0 if l < Λ(0),
P{Sn = 0|W = w} if Λ(0)≤ l < Λ(1),
1 if Λ(1)≥ l.

‖ Intuitively, it is more likely for a node to follow a misleading cascade if all the previous N∗

nodes have been tampered and act homogeneously, than for a node of higher index if the previous
decisions are non-homogeneous.
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The inference problem is hence to distinguish between two Bernoulli variables with
parameters q and r + q− 2rq, respectively. Note that the only non-trivial strategy
based on a single measurement is to choose Xn = Sn. However, if r = 5% and
q = 10−3 this strategy give a miss-detection rate of 0.949, indicating that without
collaboration each node is extremely unreliable.

We studied a network of N = 200 sensor nodes, generating Xn sequentially fol-
lowing (3) and using Algorithm 1 to compute ΛXn(Xn). Following Section 3.3, we
considered a topology-aware attacker who tampered the first N∗ nodes of the deci-
sion sequence and uses them to increase the miss-detection rate by setting Xn = 0 for
n = 1, . . . ,N∗. Finally, in order to favour the reduction of miss-detections over false
alarms, τ = 0 is chosen as is the lowest value that still allows a non-trivial inference
process∗∗. For each set of parameter values, 104 simulation runs are performed.

Simulations demonstrate that the proposed scheme enables strong network re-
silience in this scenario, allowing the sensor network to maintain a low miss-
detection rate even in the presence of an important number of Byzantine nodes
(see Figure 1). In contrast, if a traditional distributed detection scheme is used, a
topology-aware attacker can cause a miss-detection rate of 100% by just compro-
mising the few nodes that perform data aggregation (i.e. the FC(s)). Figure 1 shows
that nodes aggregating data by social learning can achieve an average asymptotic
miss-detection rate of less than 5% even when 30% of the most critical nodes are
under the control of the attacker, having some resemblance with the well-known 1/3
threshold of the Byzantine generals problem [14]. Moreover, Figure 1 also suggest
that our scheme can still provide network resilience within the 10% most unfa-
vorable cases. These results confirms that our data aggregation scheme effectively
avoids having single points of failure.

Interestingly, the data aggregation is performed node by node independently of
the network size. Hence, in a very large network the first 200 nodes would exhibit the
same performance as the one shown in Figure 1. Adding more nodes to the network
may not introduce significant improvements to the asymptotic performance, as the
asymptotic estimator is practically attained already by the 150-th node, being copied
by later nodes following an information cascade. Nevertheless, in a large network
information cascades provide the fundamental benefit of creating a large number of
nodes from where the network operator can access aggregated data.

The network resilience provided by our scheme is influenced by the sensor statis-
tics, which are determined by q and r (see Figure 2). Intuitively, the achievable miss-
detection rate under a low number of Byzantine nodes is reduced by a smaller q or
larger r. Furthermore, our numerical results suggest that the number of Byzantine
nodes affects the miss-detection rate exponentially with a rate of growth inversely
proportional to r, as nodes with smaller r trust each others decisions less and hence
are less affected by “social pressure”. Consequently, it is desirable to deploy sen-
sors with smaller probability of malfunction (q) than larger coverage (r), as a larger
coverage makes the network more vulnerable to Byzantine nodes and subsequent
misleading information cascades.

∗∗ Simulations showed that if τ < 0 then Xn = 1 for all n ∈ N independently of the value of W ,
triggering a premature information cascade.
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Fig. 1 Above: Performance of a surveillance network based on social learning, with binary signals
of range r = 5% and error rate q = 10−4, when N∗ out of N nodes are compromised by an attacker.
Bellow: Performance considering the 10% most unfavorable cases.
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Fig. 2 Asymptotic average performance of a surveillance system. A smaller sensor error rate (q)
or large sensing range (r) improves the performance under a low N∗, but the latter also makes the
performance degradation less graceful when N∗ grows.

Our scheme does not require knowledge about attack statistics, being well-suited
for practical scenarios as operation in large scale or mobile scenarios suggest dy-
namically changing topology. Moreover, simulations show that if the adversary tam-
per not the initial nodes but a different set of the same cardinality, then the attack has
less impact over the system performance. This suggests that our scheme can provide
further resilience against attackers who are not topology-aware.
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5 Conclusions

Traditional data aggregation schemes over sensor networks posses a single point of
failure, which is caused by the fact that the actual processing is performed by few
particular nodes. This weakness can be overcome by aggregating the data following
social learning principles, which distributes the processing tasks throughout the net-
work. This approach avoids single points of failure by generating a large number of
nodes from where aggregated data can be accessed. A social learning algorithm was
presented, which is simple and susceptible of being implemented in devices with
limited computational capabilities.

Our social learning data processing scheme enables resilience against topology-
aware data falsification attacks, which totally disable the detection capabilities of
traditional sensor networks. Furthermore, results suggest that the network resilience
persists even when the attacker has compromised an important number of nodes.

We hope that these results can motivate further explorations on the interface be-
tween distributed decision making, inference and signal processing over technolog-
ical and social networks.
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