81 research outputs found

    On algebraic integrability of the deformed elliptic Calogero--Moser problem

    Full text link
    Algebraic integrability of the elliptic Calogero--Moser quantum problem related to the deformed root systems \pbf{A_{2}(2)} is proved. Explicit formulae for integrals are found

    A remark on rational isochronous potentials

    Full text link
    We consider the rational potentials of the one-dimensional mechanical systems, which have a family of periodic solutions with the same period (isochronous potentials). We prove that up to a shift and adding a constant all such potentials have the form U(x)=1/2ω2x2U(x) = 1/2 \omega^2 x^2 or U(x)=1/8ω2x2+c2x2.U(x) = 1/8 \omega^2 x ^2 + c^2 x^{-2}.Comment: 5 pages, contribution to a special issue of JNMP dedicated to F. Calogero, slightly revised versio

    On generalisations of Calogero-Moser-Sutherland quantum problem and WDVV equations

    Full text link
    It is proved that if the Schr\"odinger equation Lψ=λψL \psi = \lambda \psi of Calogero-Moser-Sutherland type with L=Δ+αA+mα(mα+1)(α,α)sin2(α,x)L = -\Delta + \sum\limits_{\alpha\in{\cal A}_{+}} \frac{m_{\alpha}(m_{\alpha}+1) (\alpha,\alpha)}{\sin^{2}(\alpha,x)} has a solution of the product form ψ0=αA+sinmα(α,x),\psi_0 = \prod_{\alpha \in {\cal {A}_+}} \sin^{-m_{\alpha}}(\alpha,x), then the function F(x)=αA+mα(α,x)2log(α,x)2F(x) =\sum\limits_{\alpha \in \cal {A}_{+}} m_{\alpha} (\alpha,x)^2 {\rm log} (\alpha,x)^2 satisfies the generalised WDVV equations.Comment: 10 page

    Multidimensional Baker-Akhiezer functions and Huygens' Principle

    Get PDF
    A notion of rational Baker-Akhiezer (BA) function related to a configuration of hyperplanes in C^n is introduced. It is proved that BA function exists only for very special configurations (locus configurations), which satisfy certain overdetermined algebraic system. The BA functions satisfy some algebraically integrable Schrodinger equations, so any locus configuration determines such an equation. Some results towards the classification of all locus configurations are presented. This theory is applied to the famous Hadamard's problem of description of all hyperbolic equations satisfying Huygens' Principle. We show that in a certain class all such equations are related to locus configurations and the corresponding fundamental solutions can be constructed explicitly from the BA functions.Comment: 35 pages, LATEX, 2 figures included in graphicx. Submitted to Comm.Math.Phys. (Dec. 1998

    Quantum integrability of the deformed elliptic Calogero-Moser problem

    Full text link
    The integrability of the deformed quantum elliptic Calogero-Moser problem introduced by Chalykh, Feigin and Veselov is proven. Explicit recursive formulae for the integrals are found. For integer values of the parameter this implies the algebraic integrability of the systems.Comment: 23 page

    N=4 Mechanics, WDVV Equations and Polytopes

    Full text link
    N=4 superconformal n-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial nonlinear differential equations generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for F. The solutions are encoded by the finite Coxeter systems and certain deformations thereof, which can be encoded by particular polytopes. We provide A_n and B_3 examples in some detail. Turning on the prepotential U in a given F background is very constrained for more than three particles and nonzero central charge. The standard ansatz for U is shown to fail for all finite Coxeter systems. Three-particle models are more flexible and based on the dihedral root systems.Comment: Talk at ISQS-17 in Prague, 19-21 June 2008, and at Group-27 in Yerevan, 13-19 August 2008; v2: B_3 examples correcte

    Superanalogs of the Calogero operators and Jack polynomials

    Full text link
    A depending on a complex parameter kk superanalog SL{\mathcal S}{\mathcal L} of Calogero operator is constructed; it is related with the root system of the Lie superalgebra gl(nm){\mathfrak{gl}}(n|m). For m=0m=0 we obtain the usual Calogero operator; for m=1m=1 we obtain, up to a change of indeterminates and parameter kk the operator constructed by Veselov, Chalykh and Feigin [2,3]. For k=1,12k=1, \frac12 the operator SL{\mathcal S}{\mathcal L} is the radial part of the 2nd order Laplace operator for the symmetric superspaces corresponding to pairs (GL(V)×GL(V),GL(V))(GL(V)\times GL(V), GL(V)) and (GL(V),OSp(V))(GL(V), OSp(V)), respectively. We will show that for the generic mm and nn the superanalogs of the Jack polynomials constructed by Kerov, Okunkov and Olshanskii [5] are eigenfunctions of SL{\mathcal S}{\mathcal L}; for k=1,12k=1, \frac12 they coinside with the spherical functions corresponding to the above mentioned symmetric superspaces. We also study the inner product induced by Berezin's integral on these superspaces

    Duality for Jacobi group orbit spaces and elliptic solutions of the WDVV equations

    Full text link
    From any given Frobenius manifold one may construct a so-called dual structure which, while not satisfying the full axioms of a Frobenius manifold, shares many of its essential features, such as the existence of a prepotential satisfying the WDVV equations of associativity. Jacobi group orbit spaces naturally carry the structures of a Frobenius manifold and hence there exists a dual prepotential. In this paper this dual prepotential is constructed and expressed in terms of the elliptic polylogarithm function of Beilinson and Levin

    Autodiffusion and phase separation in aqueous solutions of polyoxypropylene diol

    Get PDF
    Phase equilibrium in the polyoxypropylene-water system at the lower consolute temperature has been studied by an NMR impulse method and by an interference micro-method. An analysis of the shape of the diffusional attenuations which in this case are complex, and also of the experimentally obtained population values, enabled one to construct the phase diagram in the 250-315° K range. The concentrated polymer phase formed by phase separation consists of polyoxypropylene diol, almost free of water. © 1989

    Legal regulation of interreligious relations in the field of general education: the ratio of public and private interests

    Get PDF
    In article on the basis of the formal legal analysis of the national legal system and the international jurisprudence the key principles of state legal regulation of the confessional relations in the sphere of the general education are distinguished; the need of their addition and unification at the national level for the purpose of providing the balanced ratio of public and private interests in the context of providing the integrated rights and personal freedoms is demonstrate
    corecore