13 research outputs found

    Effects of biochar and gypsum soil amendments on groundnut (Arachis hypogaea L.) dry matter yield and selected soil properties under water stress

    Get PDF
    The effects of amending soil with gypsum and biochar on groundnut chlorophyll concentration, water use efficiency (WUE), biomass yield and selected soil properties were investigated under water stress. Gypsum (CaSO4.2H2O) was applied at 0 and 200 kg/ha, groundnut shell biochar at 1, 2 and 4% w/w of soil, and water at 100, 70 and 40% of daily plant water requirement (PWR) as main, sub and sub-sub plots, respectively, in a split-split-plot design. Biochar neutralized the acid soil, significantly raising soil pH from 5 to 7.15 and increasing cation exchange capacity by 75%. Biochar amended at 1 and 2%, increased groundnut dry matter yield by 28%. The optimum biochar application rate for dry matter yield was 1.4% w/w. Biochar application at 4% and irrigation at 40% of PWR reduced the WUE by 45 and 50%, respectively. Chlorophyll concentration index was highest at 40% of PWR. The results suggest that biochar has potential to raise soil pH, increase moisture retention and improve crop performance. Applying water at 100% PWR can increase groundnut dry matter yields, while higher gypsum application rates may be required to affect crop performance

    Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human immunodeficiency virus (HIV)-1 infection increases the burden of malaria by increasing susceptibility to infection and decreasing the response to malarial treatment. HIV-1 has also been found to suppress the immune system and predispose to severe forms of malaria in adults. There is still a paucity of data on the association between HIV-1 infection and cerebral malaria in children. The aim of this study was to determine whether HIV-1 infection is a risk factor for cerebral malaria in children.</p> <p>Method</p> <p>We conducted an unmatched case-control study, in which 100 children with cerebral malaria were compared with 132 with uncomplicated malaria and 120 with no malaria. In stratified analyses we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusted for age.</p> <p>Results</p> <p>HIV-1 infection was present in 9% of children with cerebral malaria compared to 2.3% in uncomplicated malaria (age-adjusted odds ratio (aOR) 5.94 (95% confidence interval (CI) 1.36-25.94, p = 0.012); and 2.5% in children with no malaria (aOR 3.85 (95% CI0.99-14.93, p = 0.037). The age-adjusted odds of being HIV-positive among children with cerebral malaria compared to the control groups (children with uncomplicated malaria and no malaria) was 4.98 (95% CI 1.54-16.07), p-value = 0.003.</p> <p>Conclusions</p> <p>HIV-1 infection is associated with clinical presentation of cerebral malaria in children. Clinicians should ensure that children diagnosed with HIV infection are initiated on cotrimoxazole prophylaxis as soon as the diagnosis is made and caretakers counselled on the importance of adherence to the cotrimoxazole towards reducing the risk of acquiring <it>P.falciparum </it>malaria and associated complications such as cerebral malaria. Other malaria preventive measures such as use of insecticide-treated mosquito nets should also be emphasized during counselling sessions.</p

    Malaria Epidemiology and Control in Southern Africa

    No full text
    The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa, following the scale-up of interventions supported by the Roll Back Malaria Partnership, the President\u27s Malaria Initiative and other partners. It is important to appreciate that the reductions in malaria have not been uniform between and within countries, with some areas experiencing resurgence instead. Furthermore, while interventions have greatly reduced the burden of malaria in many countries, it is also recognized that the malaria decline pre-dated widespread intervention efforts, at least in some cases where data are available. This raises more questions as what other factors may have been contributing to the reduction in malaria transmission and to what extent. The International Center of Excellence for Malaria Research (ICEMR) in Southern Africa aims to better understand the underlying malaria epidemiology, vector ecology and parasite genomics using three contrasting settings of malaria transmission in Zambia and Zimbabwe: an area of successful malaria control, an area of resurgent malaria and an area where interventions have not been effective. The Southern Africa ICEMR will capitalize on the opportunity to investigate the complexities of malaria transmission while adapting to intervention and establish the evidence-base to guide effective and sustainable malaria intervention strategies. Key approaches to attain this goal for the region will include close collaboration with national malaria control programs and contribution to capacity building at the individual, institutional and national levels. © 2011 Elsevier B.V

    Effect of presumptive co-trimoxazole prophylaxis on pneumococcal colonization rates, seroepidemiology and antibiotic resistance in Zambian infants: a longitudinal cohort study

    No full text
    OBJECTIVE: To ascertain the microbiological consequences of WHO's recommendation for presumptive co-trimoxazole prophylaxis for infants with perinatal HIV exposure. METHODS: Using a longitudinal cohort design, we followed HIV-exposed and HIV-unexposed infants trimonthly for up to 18 months per infant. HIV-exposed infants received daily co-trimoxazole prophylaxis from 6 weeks to > 12 months of age. Using Streptococcus pneumoniae as our sentinel pathogen, we measured how co-trimoxazole altered nasopharyngeal colonization, pneumococcal resistance to antibiotics and serotype distribution as a function of co-trimoxazole exposure. FINDINGS: From 260 infants followed for 3096 patient-months, we detected pneumococci in 360/1394 (25.8%) samples. HIV-exposed infants were colonized more frequently than HIV-unexposed infants (risk ratio, RR: 1.4; 95% confidence interval, CI: 1.0-1.9, P = 0.04). Co-trimoxazole prophylaxis reduced colonization by ca 7% but increased the risk of colonization with co-trimoxazole-resistant pneumococci within 6 weeks of starting prophylaxis (RR: 3.2; 95% CI: 1.3-7.8, P = 0.04). Prophylaxis with co-trimoxazole led to a small but statistically significant increase of nasopharyngeal colonization with pneumococci not susceptible to clindamycin (RR: 1.6; 95% CI: 1.0-2.6, P = 0.04) but did not increase the risk of non-susceptibility to penicillin (RR: 1.1; 95% CI: 0.7-1.7), erythromycin (RR: 1.0; 95% CI: 0.6-1.7), tetracycline (RR: 0.9; 95% CI: 0.6-1.5) or chloramphenicol (RR: 0.8; 95% CI: 0.3-2.3). Co-trimoxazole prophylaxis did not cause the prevailing pneumococcal serotypes to differ from those that are targeted by the 7-valent conjugate pneumococcal vaccine (RR: 1.0; 95% CI: 0.7-1.6). CONCLUSION: Co-trimoxazole prophylaxis modestly suppresses pneumococcal colonization but accelerates infant acquisition of co-trimoxazole- and clindamycin-resistant pneumococci. Co-trimoxazole prophylaxis appears unlikely to compromise the future efficacy of conjugate vaccines
    corecore