22 research outputs found

    Accuracy of theory for calculating electron impact ionization of molecules

    Get PDF
    The study of electron impact single ionization of atoms and molecules has provided valuable information about fundamental collisions. The most detailed information is obtained from triple differential cross sections (TDCS) in which the energy and momentum of all three final state particles are determined. These cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. There are many theoretical approximations for ionization of molecules. One of the successful methods is the molecular 3-body distorted wave (M3DW) approximation. One of the strengths of the DW approximation is that it can be applied for any energy and any size molecule. One of the approximations that has been made to significantly reduce the required computer time is the OAMO (orientation averaged molecular orbital) approximation. In this dissertation, the accuracy of the M3DW-OAMO is tested for different molecules. Surprisingly, the M3DW-OAMO approximation yields reasonably good agreement with experiment for ionization of H2 and N2. On the other hand, the M3DW-OAMO results for ionization of CH4, NH3 and DNA derivative molecules did not agree very well with experiment. Consequently, we proposed the M3DW with a proper average (PA) calculation. In this dissertation, it is shown that the M3DW-PA calculations for CH4 and SF6 are in much better agreement with experimental data than the M3DW-OAMO results. --Abstract, page iii

    Theoretical Triple-Differential Cross Sections of a Methane Molecule By a Proper-Average Method

    Get PDF
    For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all molecular orientations. These calculations with proper averages are in much better agreement with experiment than the OAMO calculations

    Interference Effects for Intermediate Energy Electron-Impact Ionization of H₂ and N₂ Molecules

    Get PDF
    We have studied electron impact ionization of H2 and N2 molecules at intermediate energies to look for possible two center interference effects experimentally and theoretically. Here we report a study of the interference factor I for 250 eV electron-impact ionization. The experimental measurements are performed using a crossed-beam-type electron-electron coincidence spectrometer and theoretical calculations are obtained using the Molecular Three Body Distorted Wave Approximation (M3DW). We found that the I-factor demonstrated strong evidence for two-center interference effects for both H2 and N2. We also found that the I-factor is more sensitive to projectile angular scans than to ejected electron energy scans which indicate that for the present set of kinematics the diffraction of the projectile from two scattering centers is more important than interference between electron waves emitted from two different centers

    First Evidence of Interference Effects in the Ionization of N₂ Molecule

    Get PDF
    We will present an experimental and theoretical investigation of triple differential cross sections for electron- impact ionization of nitrogen molecules at intermediate energies. A discussion of interference effects contained in the theoretical and experimental interference factors will be presented

    Low Energy (e,2e) Studies from CH₄: Results from Symmetric Coplanar Experiments and Molecular Three-Body Distorted Wave Theory

    Get PDF
    Low energy experimental and theoretical triply differential cross sections are presented for electron impact ionization of methane (CH4) for both the highest occupied molecular orbital (HOMO) and next highest occupied molecular orbital (NHOMO). The HOMO is a predominantly p-type orbital which is labeled 1t2 and the NHOMO is predominantly s-type labeled 2a 1. Coplanar symmetric (symmetric both in final state electron energies and observation angles) are presented for final state electron energies ranging from 2.5 to 20 eV. The theoretical M3DW (molecular three-body distorted wave) results are in surprisingly good agreement with experiment for the HOMO state and less satisfactory agreement for the NHOMO state. The molecular NHOMO results are also compared with the ionization of the 2s shell of neon which is the isoelectronic atom

    Low Energy (e,2e) Coincidence Studies of NH₃: Results from Experiment and Theory

    Get PDF
    Experimental and theoretical triple differential cross sections (TDCS) from ammonia are presented in the low energy regime with outgoing electron energies from 20 eV down to 1.5 eV. Ionization measurements from the 3a1, 1e1, and 2a1 molecular orbitals were taken in a coplanar geometry. Data from the 3a1 and 1e1 orbitals were also obtained in a perpendicular plane geometry. The data are compared to predictions from the distorted wave Born approximation and molecular-three-body distorted wave models. The cross sections for the 3a1 and 1e1 orbitals that have p-like character were found to be similar, and were different to that of the 2a1 orbital which has s-like character. These observations are not reproduced by theory, which predicts the structure of the TDCS for all orbitals should be similar. Comparisons are also made to results from experiment and theory for the iso-electronic targets neon and methane

    Comparison of Experiment and Theory for Electron Impact Ionization of Isoelectronic Atoms and Molecules

    Get PDF
    Experimental and Theoretical Triply Differential Cross sections will be presented for low energy electron impact ionization of Ne, CH4, and NH3. The collision mechanisms responsible for the various structures found in the cross sections will be discussed

    Young Double Slit Interference Effects at Quantum Level

    Get PDF
    The currently accepted model for quantum interference resulting from the emission of electron waves from two scattering centers induced by either light or charged particle impact is analogous to Young\u27s emission of two light waves from two slits. In this work we show that this simple classical wave model is incomplete and that there is a more complicated quantum interference pattern for low energy ionization caused by electron impact

    Low Energy (e,2e) Measurements of Ch⁎ and Neon in the Perpendicular Plane

    Get PDF
    Low energy experimental and theoretical triple differential cross sections for the highest occupied molecular orbital of methane (1t2) and for the 2p atomic orbital of neon are presented and compared. These targets are iso-electronic, each containing 10 electrons and the chosen orbital within each target has p-electron character. Observation of the differences and similarities of the cross sections for these two species hence gives insight into the different scattering mechanisms occurring for atomic and molecular targets. The experiments used perpendicular, symmetric kinematics with outgoing electron energies between 1.5 eV and 30 eV for CH4 and 2.5 eV and 25 eV for neon. The experimental data from these targets are compared with theoretical predictions using a distorted-wave Born approximation. Reasonably good agreement is seen between the experiment and theory for neon while mixed results are observed for CH4. This is most likely due to approximations of the target orientation made within the model

    Experimental and theoretical investigation of the triple differential cross section for electron impact ionization of pyrimidine molecules

    Get PDF
    Cross-section data for electron impact induced ionization of bio-molecules are important for modelling the deposition of energy within a biological medium and for gaining knowledge of electron driven processes at the molecular level. Triply differential cross sections have been measured for the electron impact ionization of the outer valence 7b2 and 10a1 orbitals of pyrimidine, using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and ejected electron energy of 20 eV, for scattered electron angles of −5°, −10°, and −15°. The ejected electron angular range encompasses both the binary and recoil peaks in the triple differential cross section. Corresponding theoretical calculations have been performed using the molecular 3-body distorted wave model and are in reasonably good agreement with the present experiment
    corecore