12 research outputs found

    Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1

    Get PDF
    Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems

    Bacterial wilt and canker of tomato: fundamentals of a complex biological system

    No full text
    "Tomato (Solanum lycopersicum) is well-known as a model for study of plant–pathogen interactions, since it is a crop of global relevance and susceptible to multiple bacterial, fungal, viral and nematode pathogens. Among bacterial phytopathogens, the actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial wilt and canker of tomato, considered a quarantine disease at international level. The tomato–Cmm interaction has been studied to decipher the pathogenicity mechanisms in Cmm, susceptibility mechanisms in tomato, molecular basis of resistance to Cmm in wild species relative to domesticated tomato, and the level of genetic variability in Cmm. The objective of this review is to discuss recent advances in tomato–Cmm compatible interaction, which can be integrated for application in early diagnosis and biological control of bacterial wilt and canker of tomato. Further study of plant–microorganism interactions is a promising field for improvements in tomato pathogen resistance.

    The Role of Auxin in Root-Symbiont and Root-Pathogen Interactions: From Development to Defense

    No full text
    corecore