4 research outputs found

    Data for wetlandscapes and their changes around the world

    Get PDF
    Geography and associated hydrological, hydroclimate and land-use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment – the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land-use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature and annual land-use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape and on the availability and accessibility of associated local data. This novel database (available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarnia et al., 2019) can support site assessments; cross-regional comparisons; and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions, and changes in whole-wetlandscape functions and ecosystem services

    Channel processes of a small river heavily modified by human activities

    No full text
    Widely-spread small rivers are very poorly studied in relation to channel processes. The influence of local factors, high sensitivity to human impact, close connection with basin processes, and relatively low rates of channel changes distinguish them from medium and large ones and make it necessary to form a special approach to studies. Based on collection of long-term maps and local residents’ interviews, we reconstructed the transformation of channels in the Kudma River basin (the Volga Upland) for the last 200 years. Based on the bank erosion monitoring during 2011-2019 the modern rates of channel changes were revealed. We found that significant human impact is associated with the artificial channels cutoffs and draining of ponds which led to channel incision of the Kudma and Ozerka Rivers in the middle reaches and the transformation of floodplain into terrace. Agriculture development caused siltation of the upper reaches of rivers. The rivers of the forested part of the basin experienced the least human changes. From 2011 to 2019 the maximum rates of bank erosion were found to be within range of 0.3 to 2.7 m/year and supposed to be driven by peak water discharge

    Wetlandscape Change Information Database (WetCID)

    No full text
    Geography and associated hydrological, hydroclimate and land use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland, but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment – the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature, and annual land use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape, and on the availability and accessibility of associated local data. This novel database can support site assessments, cross-regional comparisons, and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions and changes on whole-wetlandscape functions and ecosystem services
    corecore