39 research outputs found

    Safety, Tolerability, Pharmacokinetics, and Antimalarial Activity of the Novel Plasmodium Phosphatidylinositol 4-Kinase Inhibitor MMV390048 in Healthy Volunteers.

    Get PDF
    MMV390048 is a novel antimalarial compound that inhibits Plasmodium phosphatidylinositol-4-kinase. The safety, tolerability, pharmacokinetic profile, and antimalarial activity of MMV390048 were determined in healthy volunteers in three separate studies. A first-in-human, double-blind, randomized, placebo-controlled, single-ascending-dose study was performed. Additionally, a volunteer infection study investigated the antimalarial activity of MMV390048 using the Plasmodium falciparum induced blood-stage malaria (IBSM) model. Due to the high pharmacokinetic variability with the powder-in-bottle formulation used in both of these studies, a third study was undertaken to select a tablet formulation of MMV390048 to take forward into future studies. MMV390048 was generally well tolerated when administered as a single oral dose up to 120 mg, with rapid absorption and a long elimination half-life. Twelve adverse events were considered to be potentially related to MMV390048 in the first-in-human study but with no obvious correlation between these and MMV390048 dose or exposure. Although antimalarial activity was evident in the IBSM study, rapid recrudescence occurred in most subjects after treatment with 20 mg MMV390048, a dose expected to be subtherapeutic. Reformulation of MMV390048 into two tablet formulations (tartaric acid and Syloid) resulted in significantly reduced intersubject pharmacokinetic variability. Overall, the results of this study suggest that MMV390048 is well tolerated in humans, and the pharmacokinetic properties of the compound indicate that it has the potential to be used for antimalarial prophylaxis or inclusion in a single-dose cure. MMV390048 is currently being tested in a phase 2a study in Ethiopian adults with acute, uncomplicated falciparum or vivax malaria monoinfection. (The three clinical trials described here were each registered with ClinicalTrials.gov as follows: first-in-human study, registration no. NCT02230579; IBSM study, registration no. NCT02281344; and formulation optimization study, registration no. NCT02554799.)

    Liver Function Test Abnormalities in Experimental and Clinical Plasmodium vivax Infection

    Get PDF
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5–8 days posttreatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26–14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91–27.47; P = 0.06), this risk disappeared when corrected for parasite clearance burden (PCB). Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory

    Development and evaluation of a new Plasmodium falciparum 3D7 blood stage malaria cell bank for use in malaria volunteer infection studies

    Get PDF
    Background: New anti-malarial therapeutics are required to counter the threat of increasing drug resistance. Malaria volunteer infection studies (VIS), particularly the induced blood stage malaria (IBSM) model, play a key role in accelerating anti-malarial drug development. Supply of the reference 3D7-V2 Plasmodium falciparum malaria cell bank (MCB) is limited. This study aimed to develop a new MCB, and compare the safety and infectivity of this MCB with the existing 3D7-V2 MCB, in a VIS. A second bank (3D7-V1) developed in 1995 was also evaluated. Methods: The 3D7-V2 MCB was expanded in vitro using a bioreactor to produce a new MCB designated 3D7-MBE-008. This bank and 3D7-V1 were then evaluated using the IBSM model, where healthy participants were intravenously inoculated with blood-stage parasites. Participants were treated with artemether-lumefantrine when parasitaemia or clinical thresholds were reached. Safety, infectivity and parasite growth and clearance were evaluated. Results: The in vitro expansion of 3D7-V2 produced 200 vials of the 3D7-MBE-008 MCB, with a parasitaemia of 4.3%. This compares to 0.1% in the existing 3D7-V2 MCB, and < 0.01% in the 3D7-V1 MCB. All four participants (two per MCB) developed detectable P. falciparum infection after inoculation with approximately 2800 parasites. For the 3D7-MBE-008 MCB, the parasite multiplication rate of 48 h (PMR48) using non-linear mixed effects modelling was 34.6 (95% CI 18.5–64.6), similar to the parental 3D7-V2 line; parasitaemia in both participants exceeded 10,000/mL by day 8. Growth of the 3D7-V1 was slower (PMR48 of 11.5 [95% CI 8.5–15.6]), with parasitaemia exceeding 10,000 parasites/mL on days 10 and 8.5. Rapid parasite clearance followed artemether-lumefantrine treatment in all four participants, with clearance half-lives of 4.01 and 4.06 (weighted mean 4.04 [95% CI 3.61–4.57]) hours for 3D7-MBE-008 and 4.11 and 4.52 (weighted mean 4.31 [95% CI 4.16–4.47]) hours for 3D7-V1. A total of 59 adverse events occurred; most were of mild severity with three being severe in the 3D7-MBE-008 study. Conclusion: The safety, growth and clearance profiles of the expanded 3D7-MBE-008 MCB closely resemble that of its parent, indicating its suitability for future studies. Trial Registration: Australian New Zealand Clinical Trials registry numbers: P3487 (3D7-V1): ACTRN12619001085167. P3491 (3D7-MBE-008): ACTRN1261900107913

    DYSFONCTION ENDOTHELIALE VEINEUSE INDUITE PAR LE TABAC CHEZ L'HOMME (APPROCHE PHARMACOLOGIQUE (DOCTORAT : PHARMACOLOGIE))

    No full text
    LE KREMLIN-B.- PARIS 11-BU Méd (940432101) / SudocPARIS-BIUM (751062103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    The Dynamics of Liver Function Test Abnormalities after Malaria Infection: A Retrospective Observational Study

    Get PDF
    Liver dysfunction has long been recognized as a clinical feature of malaria. We have observed delayed elevation in the transaminase portion of liver function tests (LFTs) after treatment in some participants undergoing induced blood-stage malaria infection. We sought to determine whether similar LFT elevations occur after naturally acquired infection. We performed a retrospective audit of confirmed cases ofandin Queensland, Australia, from 2006 to 2016. All LFT results from malaria diagnosis until 28 days after diagnosis were collected with demographic and clinical information to describe longitudinal changes. The timing of peak LFT elevations was classified as early (0-3 days), delayed (4-11 days), or late (12-28 days) with respect to the day of diagnosis. Among 861 cases with LFT evaluated, an elevated bilirubin level was identified in 12.4% (= 107/861), whereas elevated alanine transaminase (ALT) and aspartate transaminase levels were observed in 15.1% (= 130/861) and 14.8% (= 127/861) of cases, respectively. All peak bilirubin results occurred in the early period, whereas ALT elevations were biphasic, with elevations in the early and delayed periods, with 35.4% (= 46/130) of cases delayed. Univariate and paired stepwise logistic regression analyses were performed to investigate factors associated with the incidence and timing of transaminase elevation. A raised ALT level at diagnosis was strongly associated with the timing of transaminase elevation. No other demographic, parasitic, or treatment factors were associated. Liver function test abnormalities are likely an inherent although variable aspect of human malaria, and individual-specific factors may confer susceptibility to hepatocyte injury
    corecore