64 research outputs found

    The Glutaminase-dependent system confers extreme acid resistance to new species and atypical strains of Brucella

    Get PDF
    Neutralophilic bacteria have developed specific mechanisms to cope with the acid stress encountered in environments such as soil, fermented foods, and host compartments. In Escherichia coli, the glutamate decarboxylase (Gad)-dependent system is extremely efficient: it requires the concerted action of glutamate decarboxylase (GadA/GadB) and of the glutamate (Glu)/γ-aminobutyrate antiporter, GadC. Notably, this system is operative also in new strains/species of Brucella, among which Brucella microti, but not in the "classical" species, with the exception of marine mammals strains. Recently, the glutaminase-dependent system (named AR2_Q), relying on the deamination of glutamine (Gln) into Glu and on GadC activity, was described in E. coli. In Brucella genomes, a putative glutaminase (glsA)-coding gene is located downstream of the gadBC genes. We found that in B. microti these genes are expressed as a polycistronic transcript. Moreover, using a panel of Brucella genus-representative strains, we show that the AR2_Q system protects from extreme acid stress (pH =2.5), in the sole presence of Gln, only the Brucella species/strains predicted to have functional glsA and gadC. Indeed, mutagenesis approaches confirmed the involvement of glsA and gadC of B. microti in AR2_Q and that the acid-sensitive phenotype of B. abortus can be ascribed to a Ser248Leu substitution in GlsA, leading to loss of glutaminase activity. Furthermore, we found that the gene BMI_II339, of unknown function and downstream of the gadBC-glsA operon, positively affects Gad- and GlsA-dependent AR. Thus, we identified novel determinants that allow newly discovered and marine mammals Brucella strains to be better adapted to face hostile acidic environments. As for significance, this work may contribute to the understanding of the host preferences of Brucella species and opens the way to alternative diagnostic targets in epidemiological surveillance of brucellosis

    VSV-G pseudotyping rescues HIV-1 CA mutations that impair core assembly or stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The machinery of early HIV-1 replication still remains to be elucidated. Recently the viral core was reported to persist in the infected cell cytoplasm as an assembled particle, giving rise to the reverse transcription complex responsible for the synthesis of proviral DNA and its transport to the nucleus. Numerous studies have demonstrated that reverse transcription of the HIV-1 genome into proviral DNA is tightly dependent upon proper assembly of the capsid (CA) protein into mature cores that display appropriate stability. The functional impact of structural properties of the core in early replicative steps has yet to be determined.</p> <p>Results</p> <p>Here, we show that infectivity of HIV-1 mutants bearing S<sub>149</sub>A and S<sub>178</sub>A mutations in CA can be efficiently restored when pseudotyped with vesicular stomatitis virus envelope glycoprotein, that addresses the mutant cores through the endocytic pathway rather than by fusion at the plasma membrane. The mechanisms by which these mutations disrupt virus infectivity were investigated. S<sub>149</sub>A and S<sub>178</sub>A mutants were unable to complete reverse transcription and/or produce 2-LTR DNA. Morphological analysis of viral particles and <it>in vitro </it>uncoating assays of isolated cores demonstrated that infectivity defects resulted from disruption of the viral core assembly and stability for S<sub>149</sub>A and S<sub>178</sub>A mutants, respectively. Consistent with these results, both mutants failed to saturate TRIM-antiviral restriction activity.</p> <p>Conclusion</p> <p>Defects generated at the level of core assembly and stability by S<sub>149</sub>A and S<sub>178</sub>A mutations are sensitive to the way of delivery of viral nucleoprotein complexes into the target cell. Addressing CA mutants through the endocytic pathway may compensate for defects generated at the reverse transcription/nuclear import level subsequent to impairment of core assembly or stability.</p

    Structural Insights into the Inhibition of Cytosolic 5′-Nucleotidase II (cN-II) by Ribonucleoside 5′-Monophosphate Analogues

    Get PDF
    Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues

    Therapeutic Perspectives for cN-II in Cancer.

    No full text
    International audienceThe cytoplasmic 5'-nucleotidase cN-II is involved in the regulation of endogenous pools of nucleosides and nucleotides together with nucleoside kinases and other intracellular enzymes. A series of results from studies on preclinical models and clinical samples constitutes the basis of the hypothesis in which cN-II is a therapeutic target in cancer. Indeed, the inhibition of its enzymatic activity seems interesting both to induce cell death directly and to increase the anticancer activity of cytotoxic agents used in cancer treatment. Here we will review the current knowledge of the enzymatic function of cN-II together with available structural data and the studies on cN-II in cancer cells and in samples from cancer patients. Recent and ongoing research on cN-II inhibitors is expected to confirm the druggability and the relevance of cN-II as a cancer drug target. Preliminary in vitro data and cancer cell models using cN-II inhibitors have already suggested the pivotal role of this enzyme as therapeutic target allowing the improvement of anticancer treatments

    Synthesis of pyrimidine containing nucleoside β-(R/S)-hydroxyphosphonate analogues

    No full text
    A concise route to nucleoside β-hydroxyphosphonate analogues is described. The use of a nucleoside β-ketophosphonate as the key intermediate allowed both the (R) and (S) isomers of β-hydroxyphosphonate analogues in the pyrimidine series to be accessed. Such derivatives may be considered as stable mimics of 5′-monophosphate nucleosides and, therefore, could be the starting point for the development of potential therapeutic agents

    Synthesis of (R)- and (S)-ßhydroxyphosphonate acyclonucleosides: structural analogues of Adefovir (PMEA)

    No full text
    International audienceA synthetic pathway to new acyclonucleoside phosphonates, as analogues of Adefovir, is described. The reduction of an acyclonucleoside ß-ketophosphonate, readly available from the nucleobase and benzyl-acrylate, afforded a mixture of (R)- and (S)-ß-hydroxyphosphonate derivatives which was resolved. The assignment of the absolute configuration was proposed on the basis of NMR studies and was supported by molecular modelling studies

    Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1

    No full text
    Aptamers, small oligonucleotides derived from an in vitro evolution process called SELEX, are promising therapeutic and diagnostic agents. Although very effective in vitro, only a few examples are available showing their potential in vivo. We have analyzed the effect of a well characterized pseudoknot RNA aptamer selected for tight binding to human immunodeficiency virus (HIV) type 1 reverse transcriptase on HIV replication. Transient intracellular expression of a chimeric RNA consisting of the human initiator tRNA(Met) (tRNA(Meti))/aptamer sequence in human 293T cells showed inhibition of HIV particle release by >75% when the cells were co-transfected with proviral HIV-1 DNA. Subsequent virus production of human T-lymphoid C8166 cells, infected with viral particles derived from co-transfected 293T cells, was again reduced by >75% as compared with the control. As the observed effects are additive, in this model for virus spread, the total reduction of HIV particle formation by transient intracellular expression of the pseudoknot RNA aptamer amounts to >95%. Low-dose HIV infection of human T cells stably expressing the aptamer did not show any virus replication over a period of 35 days. This is the first example of an RNA aptamer selected against a viral enzyme target to show powerful antiviral activity in HIV-1-permissive human T-lymphoid cell lines
    • …
    corecore